Sitfinvesticatiantaiferen

PRDPESED DEVELDPMENT

24曰 MADRAS STREET

Sols s Foundetenstidudt

SITE INVESTIGATION REPORT

PROPOSED DEVELORMENT - 249 MADRAS STREET

SUBSUREACE INVESTIGGTION REPORT

PROPOSES DEVEIORMENT : 249 MADRAS STREET

1. INIRODUCIION

As instructed at our meeting of 28th April, and your letter of 8 th May 1986, investigations have been carried out to determine the subsurface conditions and practical foundation types for the proposed- development at 249 Madras Street, Christchurch.

The proposed development is a six storey commercial building covering an area of 760 sq.m. and of reinforced concrete flat slab construction. The ground floor will be used for car parking.

2. SITE DESCRIPITION

The approximately square site at 249 Madras Street is presently being used as a car park with access from Madras street. The site is flat with a ground level about 0.3 m above kerb level, and is completely covered with ashphalt. Before being used as a carpark, two houses occupied the site.

A single storey brick building adjoins the site on the south boundary. This will be about 4 metres from the proposed develoment. A two storey brick building is constructed up to the west boundary and will be immediately adjacent to the rear wall of the proposed development. The type of foundation for these buildings is not known, but is assumed to be shallow footings. A two storied concrete and masonry building on the north side is separated from the site by a 3.7 metre wide access lane. This building is constructed over a basement floor.
3. SUBSURFACE INFORMATION FROM ADJACENT STIRUCTURES

The location of subsurface information from several other structures in the area is shown in Figure 299/1. To the northwest, boreholes on the site of the Occidental Hotel and AAC Building show interbedded soft sediments extending to about 8 metres below ground level. 2 metres of peat or "peaty clay" was found in two of these boreholes. A thick layer of dense sand was found undemeath the soft sediments. This general profile extends for some distance to the northwest, and has been found in Hereford Street, Manchester Street and Gloucester Street.

One borehole on the AAC site showed fine sediments to 4.8 metres depth, overlying gravels.

Boreholes to the south and southeast of the site show fine sediments to a depth of between 4.5 and 6 metres, overlying a gravel layer about 6 metres thick. A layer of sand about 10 metres thick was found under the
gravels, with gravels and sands at greater depth.
From this information it would appear that a thick layer of sand underlies the area with the top surface gently sloping from about 8 metre depth at Hereford Street to 12 metre depth south of Cashel street. A 6 m thick layer of gravel lies over the sand, in the vicinity of Cashel Street, but in the vicinity of the development site, it appears that there is a relatively abrupt change from gravel to soft sediments. The near surface layers above 4 m depth are silts to fine sand over the whole area.

4. SITE INVESTIGATIONS

Fight hand auger holes were carried out to determine the near surface soil profile accoss the site. These were supplemented by three machine auger holes to contact the gravel. Samples and SPT testing were taken in these holes. One deep borehole to 25 m depth and second borehole to 10 m depth were drilled with a cable tool rig. The location of the investigation holes are shown on the site plan. Figure 299/2, and logs of the holes (299/1 to 299/15) are appended.

5. SUBSURFACE CONDITIONS

The investigations showed that subsurface conditions are not consistent over the whole site. The west, south and centre of the site has gravel at between 3.2 and 3.8 metre depth, and borehole 15 showed the gravel to extend to 9.2 m depth directly overlying a layer of dense sand. Auger hole 9 in the north-east comer located gravel at 4.6 m , but the cable tool hole 14 encountered only a 0.1 m thick layer of gravel at 6.0 m depth. 3 metres of firm silt and silty sand were found between this thin gravel layer and the grey sand at 9 m . It appears that the transition between the gravel and soft sediments overlying the sand layer referred to section 3 above, is quite abrupt and crosses the north. east comer of the site. The gravel which is 5.7 m thick at borehole 15 has virtually disappeared at hole 14 , only 11 metres away.

The near surface layers are consistent over the site. The asphalt is laid directly on either a thin layer of mottled yellow brown silt, or organic silt containing some debris. In places this disturbed topsoil extends to 0.9 m depth. Below the surface silt and topsoil, yellow brown silt was found to $1.2-1.6 \mathrm{~m}$ depth. Yellow brown silty fine to medium sand extends to between 2.5 and 5.0 m depth and overlies a thin layer of grey medium sand immediately above the gravel.

The gravel layer is water bearing, and the water table was located at 2.8 m depth.

A dense sand layer appears to underlle the whole site from 9 m to 13 m depth. Below this medium dense to dense sands extend to about 23 m depth, with silts containing lenses of organic material continuing to the full depth of 25 m investigated. The casing of hole 14 was driven on to 27.5 m depth without encountering any increase in driving
resistance, which indicates that silts extend to at least this depth.

6. FOUNDATION SYSTEMS

6.1 General

A major consideration for the design of the foundation system is the change in subsurface conditions in the north-eastern corner of the site. This affects settlements of a shallow foundation system and depth and capacity of a piled foundation.

6.2 Shallow Footings

6.2.1 . Settlement

A shallow foundation system appears to be practicable- on this site. Figure 299/3 gives estimates of the unfactored allowable bearing pressures on footings to limit settlement to less than 25 mm. The settlement limits are based on a foundation depth of 1.0 metre. The two sets of lines refer to:
(a) foundations on the silts and sand overlying gravel at 3.5 m depth (as in borehole 15)
(b) foundations on the silts and sand overlying silt between 6 and 8 m with sands below 8 m (as in borehole 14).

Narrow footings produce smaller pressure bulbs hence permitting increased bearing pressures for a given settlement. For footings less than 1 metre wide, the effective pressure bulb for settlement remains within the near surface sediments, and similar bearing pressures will produce similar settlements in both the soil profiles modelled. For wider footings, the pressure bulb extends into the relatively incompressible gravel for profile (a) and into. the relatively compressible silt for profile (b) requiring different bearing pressures to limit settlements to similar amounts.

25 mm is commonly adopted as the limit on total settlement, on the basis that differential settlements are likely to be less than about 75\% of the total settlement. For 25 mm total settlement, differential settlements should be less than $20 \mathrm{~mm}(1 / 300 \mathrm{x}$ distance between columns at 6 m spacing).

It is apparent that to minimise differential settlements between the north-east cormer and the remainder of the structure, bearing pressures must be reduced over the area without underlying gravels. The extent of this area is not well defined from the initial investigation and further investigation work is recommended.

Settlement will take place during the period of construction of the building. Although settlement in the north-east comer will
be slower than over the remainder of the site for footing widths ' In excess of about 1.5 metres, settlement should be largely complete by the time the building is finished.

It should be noted that settlements for a given bearing pressure will be reauced from the 25 mm indicated in Figure 299/3 if the footings are founded at a greater depth. This only applies for the footings over the area of underlying gravels, as the gravels are relatively incompressible when compared with the overlying sediments, or with the silts and sand encountered in the north east corner.

6.2.2 Bearing Pressure

Also shown in Figure 299/3 are the net allowable bearing pressures derived from bearing capacity considerations and incorporating a factor of safety of 3 .

The values given in Figure 299/3 apply to footings over the whole site as the bearing capacity for shallow foundations is governed by the surface sediments which are uniform acioss the site.

6.2.3 Seismic Loading

The near surface fine sediments have only moderate resistance to seismic loading. For shallow footings no increase in allowable stresses governed by bearing capacity is recommended. When settlements govern, an increase in bearing pressure under seismic loadings will incur settlements additional to the static value.
6.2.4 Ratt foundation

A raft foundation with a dead plus long term live load in the order of $50-60 \mathrm{kPa}$ would be subject to differential settlement of the north east comer. The above loading would produce an average. settlement of 5-10 mm over the gravels, and about 25 nm over the north-east comer.
6.3 Piles - borect or driver? pliancter?
6.3.1 Bearing Capacity

The gravels extending below 3.5 to 4 metres should provide good bearing for driven or cast-in place piles over most of the site. An ultimate pile tip bearing pressure pf 4.5 Mpa has been assessed for piles founded at 7 m depth. This depth provides adequate penetration into the bearing layer, as well as maintaining a sufficient thickness of gravel between the pile tip and the less dense sands below.

In the north east comer where the gravel layer is very thin, piles would need to be founded in the layer of dense sand between, 9 and 13.5 m depth. An ultimate pile tip bearing pressure of (1.8)

$$
q_{u}=1800 \mathrm{kPa}
$$

$$
N=55
$$

6.2.3 Uplift Capacity

Uplift resistance can be supplied by cast-in-situ bulb piles. Ultimate capacities of 400 kN for a $0.5 \mathrm{~m}^{3} \mathrm{bulib}$ with the pile founded at 7 m depth, or 750 kN for a similar pile founded at 10.5 m depth.

7. CONCLUSION

The subsurface conditions are not consistent over the whole site. However with an appropriate reduction of bearing pressures in the north east corner to limit settlements for a shallow foundation and to allow for a lower bearing capacity for a piled foundation, either a shallow foundation or piled foundation would be suitable.

It is recommended that when footing positions and loads are known further investigation holes be camried out to define the limits of the area in the north east comer of the site which is not underlain with gravel and thus define the area where deeper piles or wider footings are required.

TASMANIA HOUSE, 71 ARMAGH ST, P.O. 8OX 451, CHRISTCHURCH, N. 2. TELEPHONE 798-432
\because
Ref:

Soils aroundationscıтaltd
 Site Investigation Unit
 Geomechanics Laboratory
 Foundation Engineering
 Subdivision Stability
 Roading Investigations Geological Reports
 Soil Stabilisation

SITE: 249 MADRAS STREET.
FIGURE 299/3
RECOMMENDED BEARING PRESSURES FOR FOOITINGS.

（1973）LIMTIED
FEATURE ：．≈ 249 MADRAS STREET LOCATION：SOUTH EAST CORNER
COORDINATES ：SEE PLAN ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．GEPTD
MAP GRID
R．L．GROUND
（m） －…－．．．．．．．．．．．．．．．．．．．．．． ATTITUDE／DIRECTION：
\qquad
GEOLOGICAL
UNIT
DESCRIPTION

