ENG.ING.0005.1

The performance of unreinforced masonry buildings in the 2010/2011 Canterbury earthquakes

Jason Ingham

ENG.ING.0005.2

Part 5: Closing remarks

ENG.ING.0005.3

Effect of duration of strong ground shaking

- Little useful data available for performance of 'NZ type' URM buildings in longer duration effects
- It is clear that URM buildings degrade and collapse with repeated cycling. Death toll could have been much higher consider URM demolitions vs deaths
- The trend in recent decades had been for economic losses to be more prominent than death toll, <u>but USA and NZ have not had long duration event</u>

ENG.ING.0005.4

Fatality comparisons

J 1 P 1							
Year	Event	Country	Magnitude	Duration (sec)	Depth (km)	Time	Deaths
1931	Napier	NZ	7.9	150	20	10.47	256
1989	Loma Prieta	USA	6.9	17	18	17.54	63
1994	Northridge	USA	6.7	15	19	4.31	33
2001	Nisqualle	USA	6.8	10	52	10.54	0
2007	Gisborne	NZ	6.8	7	44	20.55	0
2009	L'Aquila	Italy	6.3	10	10	3.32	308
2010	Port-au-Prince	Haiti	7.0	35	13	16.53	316,000
2010	Maule	Chile	8.8	180	35	3.34	562
2010	Darfield	NZ	7.1	10	10	4.35	0
2011	Christchurch	NZ	6.3	7	5	12.51	181
2011	Tohoku	Japan	9.0	120-180	32	14.46	25,000

ENG.ING.0005.5

Recommendations

- National rather than regional policy on earthquake strengthening
- Data supports 67%NBS as a minimum. Buildings owners need to be aware that strengthening to 33% may not greatly improve performance above that of unstrengthened building
- Joined buildings need to be treated as a whole when undertaking earthquake strengthening
- Secure all parapets, gables and chimneys to minimise falling hazard to passers-by
 - Further investigate why restrained parapets and gables performed poorly
- Greater knowledge base regarding the earthquake response of this type of building

