Venue and Dates

Christchurch, 9-11 July 1986, at Room E7, School of Engineering, University of Canterbury.

Closing Date of Applications

Wednesday 18 June 1986.
As enrolment is limited, applications will be accepted in order of receipt.

Fee

$\$ 160$ payable on application using the attached form.
The fee covers coffee, lunches, social hours and seminar notes for Sessions 2, 7, 9, 10 and 11.
Copies of additional notes "Applications of New Zealand Standard Code of Practice for the Design of Concrete Structures, NZS 3101:1982', New Zealand Concrete Society Technical Report No. 2, August 1983, which cover Sessions 1, 2, 3, 4, 5, 6 and 8, are also available to seminar participants at an additional cost of $\$ 28$.

DESIGN OF こONCRETE STRUCTURES

Joint University of Canterbury
New Zealand Concrete Society Seminar
Organised by the Department of Civil Engineering of the University of Canterbury.

The seminar will offer a state-of-the-art covering of the design of concrete structures with particular emphasis on the requirements for seismic loading. Topics considered to be well established will be covered only briefly during the seminar, while in the other areas, particularly where more recent research information has come to hand, an extended treatment will be offered.
The seminar will assist engineers to become more familiar with the New Zealard Standard Code of Practice for the Design of Concrete Structures NZS 3101:1982 and its applications. In some sessions of the seminar the presentations will be similar to those given in the seminars on NZS 3101:1982 organised in 1983 by the New Zealand Concrete Society. For this reason Technical Report No. 2 of the New Zealand Concrete Society, entitled "Applications of the New Zealand Standard Code of Practice for the Design of Concrete Structures, NZS 3101:1982", which includes a number of design examples, will be found useful. Special notes for this seminar will be prepared only for some sessions. A session on design charts and computer programs is also included.
In addition the seminar will include sessions on the design of concrete structures for the storage of liquids and on the design of concrete masonry, which will explain the background to the new codes DZ 3106 and NZS 4203P: 1985 recently issued by the Standards Association of New Zealand.

Lecturers

R. Park. Professor of Civil Engineering, University of Canterbury, Christchurch.
T. Paulay, Professor of Civil Engineering, University of Canterbury, Christchurch.
M. J. N. Priestley, Reader in Civil Engineering, University of Canterbury, Christchurch.
L. Gaerty, Assistant Director, New Zealand Concrete Research Association, Porirua.

Seminar Programme and Leciurers
DESIGN OF CONCRETE STRUCTURES

Time	Topic	Lecturer
Wednesday 9 July 1986		
9.00-9.05	introduction	
9.05-10.30	Session 1: General Design Requirements and Capacity Design Principles	T. Paulay
Coffee		
11.00-12.30	Session 2: Reinforced	
	Concrete Members With	
	Flexure With and Without	
	Axial Load	R. Park
Lunch		
2.00-3.00	Session 3: Reinforced	
	and Torsion	T. Paulay
Coffee		
3.30-5.00	Session 4: Reinforced Concrete	
	Beam-Column Joints	R. Park
5.15-6.15	Social Hour	
Thursday 10 July 1986		
9.00-10.45	Session 5: Reinforced	
	Concrete Structural Walls	T. Paulay
Coffee		
11.15-12.30	Session 6. Fioor Slaibs and	
	Diaphragms	R. Park
Lunch		
2.00-3.30	Session 7: The Capacity Design	
Coffee		
4.00-5.30	Session 8: Prestressed	
	Concrete	R. Park
5.45-6.45	Social Hour	
Friday 11 July 1986		
9.00-10.30	Session 9: Design Charts and	
	Computer Programs for	
	Reinforced Concrete	L. Gaerty
Coffee		
11-00-12.30	Session 10: Structures for the	
	Storage of Liquids	M. J. N. Priestley
Lunch		
2.00-3.30	Session 11: Masonry	
	Structures	M. J. N. Priestley
Coffee		
4.00-5.30	Discussion	

DZ 3106
Draft New Zealand Standard

CODE OF PRACTICE

FOR CONCRETE STRUCTURES FOR THE STORAGE OF LIQUIDS

Related documents
Foreword

Section

1 GENERAL
1.1 Scope
1.2 Interpretation
1.3 Support structures
1.4 Roofs
1.5 Notation
1.6 Definitions

2 DESIGN CONSIDERATIONS
2.1 Design method
2.2 Design loads
2.3 Load combinations

3 MATERIALS
3.1 General
3.2 Concrete
3.3 Cement mortar
3.4 Non-prestressed reinforcement
3.5 Pretressed reinforcement

4 CONSTRUCTION REQUIREMENTS
4.1 General
4.2 Concrete placing
4.3 Prestressing, stressing and grouting

5 DESIGN OF REINFORCED CONCRETE ELEMENTS
5.1 General
5.2 Stiffness of cracked section
5.3 Minimum permitted concrete stresses
5.4 Reinforcing steel stresses
5.5 Minimum reinforcement
5.6 Bond and anchorage
5.7 Minimum cover to reinforcement
5.8 Floor slabs
5.9 Roofs

6 DESIGN OF PRESTRESSED CONCRETE ELEMENTS
6.1 General
6.2 Materials
6.3 Allc:vable stresses
6.4 Secondary prestress stresses
6.5 Non-tensioned reinforcement
6.6 Partial prestressing

7 CEMENT MORTAR ELEMENTS
7.1 General
7.2 Construction
7.3 Pneumatically-placed mortar
7.4 Hand-placed mortar
7.5 Mechanically-placed mortar
7.6 Minimum wall thickness for watertightness
7.7 Reinforcement
7.8 Minimum cover to reinforement
7.9 Cement mortar roofs

APPENDIX
A Cylindrical tank thermal tables
B Fundamental period of vibration of the inertia component of a rectangular tank (T_{I})

NZS 4441:1972

BRITISH STANDARDS

BS 1485:1983

BS 4102:1971

BS 5337:1976

AMERICAN CONCRETE SOCIETY

ACI 344R-70

Swimming pools

Zinc coated hexagonal steel wire netting

Steel wire for fences

The structural use of concrete for retaining aque ous liquids

Design and construction of circular pretressed concrete structures

COMMITTEE REPRESENTATION

This draft for comment was prepared under the direction of the Building and Civil Engineering Divisional Coṃrittee (30/-) of the Standards Association of New Zealand.

The Concrete Structures for the Storage of Liquids Committee (31/10) was responsible for the preparation of the draft and consisted of the following persons:

```
Mr P J North
Dr M J N Priestley
Mr J Vessey.
```

FOREWORD

In 1978, two documents entitled 'Code of Practice for Concrete Structures for the Storage of Liquids' Parts 1 and 2 were promulgated, intended to replace the technical requirements of NZS 1900: Chapter 11.1 : 1964. The first of these, NZS 3106P Part 1:1978, a provisional standard, represented comparatively minor changes to the approach and substance of the 1964 document. The second document, published by SANZ as DZ 3106 Part 2, a draft for comment, contained a radically different 'crack control' approach, where design was basically controlled by calculated crack widths under service load conditions. This second document also contained much more detailed advice on seismic loading, temperature stresses, and effects of creep and shrinkage.
A. small committee was formed in 1983 to reconcile the two approaches, and produce a new, single draft for comment, replacing both the earlier publications. In doing so, the committee was mindful of considerable resistance in the design profession to the 'crack control' approach. One of the reasons for this resistance was the uncertainty of crack control equations: different available equations result in a wide range of predicted crack wiạths, and the applicability of any of the equations to cracking of, for example, circular shell structures has yet to be established experimentally.

However, the committee also recognised that: the approach presented in NZS 3106P: Part 11978 was largely outdated, and did not reflect advances in the state of knowledge of behaviour of concrete liquid retaining structures, made over the past 20 years.

Consequently this current draft for comment is more than just a meshing together of the previous two documents. It represents a
new approach, the committees believes, one that is closer to traditional methods of design for these structures while still taking advantage of improved knowledge of their design. Design is solely based on working stress methods. Ultimate strength design using factored loads is seen as inappropriate when the basic design load (that of the contained li(uid) is known to a comparatively high precision. Thus a load factor reflecting the uncertainty of magnitude of fluid loading would be close to unity. Conversely, performance under service loads is of prime importance, and a detailed control of service conditions is essential. Two categories of load combinations are listed: permanent or long duration loads, and combinations including infrequent combination of transient loads. For the two categories, different limiting stresses are allowed.

The format of this araft has also been changed somewhat, and is close to that adopted in recent SANZ structural design codes.

APPENDIX A

CYLINDRICAL TANK THERMAL TABLES

Tables are given for 3 base conditions: PINNED

SFACT $=\mathrm{H}^{2} / \mathrm{D} . \mathrm{t}$.

FIXED
SLIDING

In each case, the top is assumed to be free.
Stresses are given for three thermal conditions.
(1) Average Temperature Change
\equiv Uniform temperature change of θ_{A}
Tables assume θ_{A} is a temperature increase
Reverse sign for temperature decrease
(2) Differential Temperature Change

三 Differential temperature change of $\stackrel{ \pm}{-} \theta_{D}$ ie:

Note total gradient through wall
$={ }^{2} \theta_{D}$

Tables assume outside hotter than inside
Reverse sign for inside hotter than outside.
(3) Total Temperature Change

三 Temperature variation on outside surface only $=\theta_{T}$ i.e:
Tables assume outside hotter than inside. Reverse sign for outside colder than inside.

Stresses

$\mathcal{I}=\mathrm{C} . \mathrm{E} \alpha \theta$ where $\mathrm{C}=$ coefficient from appropriate table
$E=$ Mod. of Blast.
$\alpha=\mathrm{Lin}$. coeff. of thermal expansion
$\theta=\theta_{\mathbf{A}}: \theta_{D}$ or θ_{T} as appropriate.
Note: Sign Convention is tension the Vertical stress given for Inside surface Creverse sign for Outride scerfrec)
'6

PINNED-BASE CONDITION
rtichl thermal stress - average temperature change

ACT	TOP	0.1 H	0.2 H	0.3H	: 0.4 H	0.5 H	0.6 H	0.7H	0.8 H	0.9 H	BTM
2.060	3.000	-0.022	-0.079	-0.175	-0.274	-0.379	-0.478	-0.526	-0.492	-0.348	$0.000:$
5.000	0.000	-0.014	-0.065	-8.144	-0.22?	-0.331	-0.457	-0.547	-0.551	-0.408	0.806
4.000	0.090	-0.005	-0.634	-0.077	-0. 0.058	-8.274.	-0.398	-0.480	-6.5ES	-0.465	0.800 :
5.000	0.000	0.000	-0.006	-0.036	-0.098	-0.204	-0.341	-0.446	- 1.562	-0.490	$0.000:$
5.060	0.000	0.000	0.000	-0.014	-0.000	-0.067.	-8.192.	-8.365	-0.547	-0.518.	0.090°
8.000	0.000	0.000 0.000		, ${ }^{1} 4$	0.01 z	-0.054.	-0.132	-0.30.3	-0.515	-0.540	0.803.
10.000 12.000	0.000	0.000	0.000	0.014	0.029	0.000	-0.072	-0.24 5	-0.461	-0.562	0.0013
14.003	0.000	0.000	0.000	0.017	0.017	0.017	8.000	-0.262	-0.437	554 557	0.000
26.000	0.000	0.000	0.000	0.000	0.019	0.038	0.077	-0.154	-0.422		
RTICAL	THERMAL	STRESS	FFERE	L TEM	CHAN						
'ACT	TOP	0.14	0.2 H	0.3H	0.4 H	0.5H	$0.6 H$	0.7 H	0.8 H	0.9 H	ETM
2.000	0.009	0.872	0.234	0.417	0.539	$\cdot .0 .697$	0.728	0.665	0.531	$\begin{aligned} & 0.306 \\ & 0.425 \end{aligned}$	$\begin{aligned} & 0.0 .82 \\ & 0.053 \end{aligned}$
3.000	0.090	0.109	0.346	0.605	0.832	0.969 1.129	1.007	-0.921	0.728	0.484	0.041%
4.000	0.000	0.139	0.428	0.733	0.978	1. 1.206	1. 1.55	-1.068	0.910	0.522	9.937
5.000	0.000	-.185	8.454	-8.895	1.143	1.282	1.305	2.263	0.95 ¢	0.551	0.015°
6.000	0.000	0.189	O. 0.644	0.891	-1.218	1.335	1.327.	1.2 EO	1.028	0.693	0.002
8.600	O.000	0.233	0.644	1.860	1.251	1.335	1.349	1.286	1.082	0.653	-0.0.31
10.090	- 8.000	0.2	0.797	1.116	1.266	1.321	1.335	1.297	1.125	0.702	-0.0.0?
22.006	8.000 0.000	0.359	0.861	1.159	1.272	1.304	1.319.	1.332	2.181	0.745	-0.001
18.000	0.000	0.397	0.915	1.191	1.274	1.287	1.301	1.364	1.187	0.785	001

PINNED-EASE CONDITION

PIMNED-EASE CONDITION

HOOP THERMAL STRESS-INSIDE, DIFFERENTIAL CHANGE

SFACT	TOP	0.14	-. 2 H	C. 3H	0.4H	0.54	O.SH	0.7 H	0.8H	0.9 H	BTM
2. 000	0.273	0.647	0.947	1.177	1.343	1.445	1.494	1.487	1.42e	1.289	1.076
- 3.000	0.247	0.676	1.002	1.229	1.379	1.464	1.504.	1.493	1.427	1.285	1.037.
4.000	0.260	0.777	1.053	1.261	1.382	1.448	1.477°	1.472	1.418	1.2 231	1.413
5.000	0.276	0.815	1.098	1.882	1.376	1.420	1.442	1.446	1.410	1.233	1.262
6.000	0. 290	0.816	1.136	1.297	1.354	1.389	1.407	1.428			0.997
8.000	O. 304	0.884	1.195	1.314	. 336	1.336	1.321	1.378	1.392	1.307	-. 2.597
10.000	0.310	0.933	1.238	$1.32{ }^{1}$	1.313	1.293	1.372	1.323	2.383	1.342	0.999
12.000 14.000	0.310 0.309	1.019	1.299	1.332	1.277	1.243	1.251	1.305	$1.37 E$	1.353	1.003
16.000	0.309	1.050	2.367	1.317	1. 264	1.230	1.236	1.291	1.367	1.361	060
HOOP THERMAL STRESS-OUTSIDE:DIFFERENTIAL CHANGE											
SFACT	TOP	0.1H	-.2H!	0.3 H	0.4 H	0.54	0.6 H	0.7 H	0.8 H	0.9 H	BTi1
	-1.723	-1.380	-1.138	-0.974	-0.871	-0.805	-0.769	-0.753	-0.772	-0.822	-0.93E
3.000	-1.753	-1.3E4	-1.123	-0.990	-0.921	-6.885	-0.859	-0.940	-0.835	-0.8.59	-0.983
4.000	-1.741	-1.274	-1.10	-1.004	-0.971	-0.959	-0.913	-0.912	-0. 885	-0.394	-1.003
5.000	-1.725	-1.245	-1.081	-1.615	-1.014	-1.622	-1.0i0	-0.970	-0.919	-0.996	-1.003
5.008	-1.711	-1.253	-1.062	-1.028	-1.049	-1.073	-1.054	-1.014	-0.943	-0.903	-1.003
8.003	-1.695	-1.200	-1.037	-1.043	-1.103	-1.145	-1.418	-1.077	-0.909	-0.911	-1.008
16.600	-1.691	-1.162	- 1.01 .018	-1.061	-1.164	-1.213	- $1.200{ }^{\text {- }}$	-1.1.144	-1.024	-9.912	-1.001
12.000	-1.691	-1.111	-1.018	-1.096	-1.192	-1. 2 2?	- . 2.24	-1.164	-1.043	-0.316	-1.000
16.006	-1.692	-1.053	-1.623	-1.113	-1.196	-1.235	-1. 233	-1.179	-1.061	-0.9E2	-1.000

PINTED-BASE CONDITION

- VERTICAL THERMAL STRESS-TOTAL EFFECTS

- SFACT	TOP	0.14	0. ZH	0.3 H	0.4 H	0.5 H	0.6 H	0.7H	0.8 H	0.9 H	ETM
2:000	0.000	0.025	0.078	-0.121	0.159	0.159	0.125	0.070	0.019	-0.021	0.015
$\therefore 3.000$	0.000	0.047	0.141	0.231	0.303	0.319	0.E35	0.187	0.083	0.012	-. $\frac{0}{}$
4.000	0.000	0.067	0.197	0.328	0.410	0.42 ?	0.383	-. ट? 2	0.136	0.0 ¢1	0.021
5.000	0.600	0.682	0.244	0.394	0.492	0.511	0.157	0.335	0.173	$0.02 ?$	0.013
6.000	0.000	0.095	0.274	0.441	0.543	0.573	0.512.	0.378	0.197	0.031	0.205
8.000	0.000	0.117	0.322	0.505	0.609	0.634	0.582	0.448	- 0.242	0.842	0.081
10.060	0.060	0.138	e. 362	0.54 L	0.631	0.655	0.609	0.493	-0.283	0.056	-0.001
12.000	0.000	e. 168	0.398	0.565	0.648	0.661	0.631	0.525	0.332	0.070	-0.001
14.006	0.000	0.179	0.431	0.588	0.685	0.660	0.659	0.550	0.362	0.056	-0.cal
16.008	0.008	0.158	0.458	0.595	0.645	0.663	0.689	0.575	0.382	0.124	-0.03:
HOOP THER	L STRE	INSID	TOTAL	FECTS							
SFACT	TOP'	0.14	$0.2 H$	0.314	0.4 H	0.5 H	0.5H	0.7 H	0.84	0.94	STM
2.008	0.239	0.401	0.527	0.659	0.652	0.656	0.613	e. 531	0.405	0.239	0.038°
$\therefore \quad 3.0610$	0.161	0.376	0.536	0.639	0.694	0.705	0.670	0.587 0.616	0.452	0. 261	0.013
4.006	0.139	0.407	0.550	6.657	0.711	-. 722	0.692	$0-616$ 0.633	0.481	0.2.298	S.OE1
5.000	0.134	\%. 414	0. 566	0.665	9.714 0.708	0.723	0.699 0.658	0.633	0.524	0.315	-0.601
6.000	0.139	0.410	0.590	O.EG9	0.708	Q.715	0.674	0.655	0.557	0.350	-0.0こ己
8.008	0.145	0.448	0.602	- 0.671	0.6972	0.671	0.673	0.662	0.586	0.388	-6.032
10.606	0.151	0.467 0.450	0.619	0.663	0.653	0.652	0.652	0.665	0.610	0.409	-0.0\%:
14.000	0.255	0.508	0.644	0.652	0.644	9.639	0.655	0.665	0.625	0.433	0.303
16.000 16.000	-. 155	0.5ES	0.653	0.658	0.635	0.629	0.650	0:664	0.634	9.402	9
OOP THE	L	S-OUTSI	TOT	EFFECTS							
'SFACT	TOP	0.14	0. 2 H	0.3H	6.4H	0.54	0.6 H	0.7 H	0.8 H	0.9 H	ETM
	-0.761	-0.608	-0.501	-6.385	-0.405	-0.402	-0.432	-0.495	-0. 802	-0.754	-0.968
3.003	-0.940	-0.641	-0.515	-0.445	-0.416	-0.410	-0.429	-0.481	-0.580	-0.729	-0.03E
4.000	-8.862	-0.618	-0.52\%	-0.461	-8.437	-0.432	-0.446	-0.483	-0.568	-0.714	-1.02\%
5.002	-8.865	-0.E16	-0. 5 2	-0.4.6	-0. 204	-0.462	-0.487	-0.495	-0.547	-0.65?	-1.05
6.000	-0.861	-0. 0.65	-8.530	-0.490	-0.438	-8. 2.534	-0.543	-0. 0.517	-0.538	-0.666	-1.0.7
8.008	-8.850	-0.602	-6.515	-6. 6.5	-6.55	-0.5E6	-0.545	-0.516	-0.516	-0.640	-1.93:
10.008	-8.850	-0.584	-0.512	-0.540	-0.5?6	-4.501:	-0.5156	-6.525	-0.610	-0.617	-1.0.
12.006	-8.846 -2.846	-0.55?	-8. O2 2	-0. 0.5	-0.589	-0.69rs	-0.583	-8. 0.33	-0.503	$-0,681$ -0.499	-1.80

PIXPD-RASE CONDITTION

rtical thermal stress - average temperature change

ACT	TOP	0.1H	$0.2 H$	$0.3 H$	0.4 H	0.5 H	0.6	0.7 H	$0.8 \mathrm{H}^{\circ}$	0.9 H	ETM	
2.000	0.000	-0.024	-0.986	-0.158	-0.211							
3.0060	0.000	-0.025	-0.094	-0.184	-6.266	-0.328	-0. 0.299	0.046 -0.251	O. 401	0.934	1.726	-
4.000	0.800	-0.019	-0.072	-0.158	-0.250	-0.326	-0.360	. -0.251	0.191	0.803	1.739	
5.000	0.000	-0.012	-0.048	-0.114	-0.210	-0.306	-0.366.	-0.312	-0.062	O.696	1.75	
6.009	0.000	-0.007	-0.0.93	-0.079	- 0.158	-0.259	-0.353	-8.316	-0.122	3.528	1.?5:3	
8.000	$0 \cdot \mathrm{Hod}$	0.000	-0.010	-0.029	-0.677	-6.173	-0.298	-0.365	-0.230	0.354	1.76 \%	
10.000	0.600 0.000	0.000 0.000	0.012	0.000 0.014	-0.6\#4.	-0.108	-0.25E	-0. 360	-6.312	0.2.154.	1.?É	
14.000	0.000	0.000	0.000	0.000	0.000	-0.034	-0.202	-0.346	-0.317	0.173	1.771	
16.800	0.000	0.600	0.000	0.000	0.013	-0.019	-0.115	-6. 3.30	-0.384.	$\begin{aligned} & 0.118 \\ & 9.098 \end{aligned}$	2.764 1.747	
RTICAL	THERMAL	STRESS	FEREN	L TEM	Cltange							
ACT	TOP	0.14	0.2H	0.3H	0.4 H	$0.5 H$	0.6 H	0.7 H	0.8 H	0.9 H	ETM	:
2.000	0.000	0.070	0.232	-0.132	0.633	0.814	0.954	1.080	1.164			
3.000	0.100	0.100	0.320	0.569	0.797	6.981	1.113	1.158	1.247	1.263	1.2.25	
	0.000	0.129	0.397	0.650	0.916	1.987	1.193	1.249	1.270	1.271	1.P.E1	
5.000	0.000 0.000	- 0.156	6.465 8.527	0.770	1.605	1.157	1.237	1.269	1.271	1. 261	1.24.7	
3.coo	0.000	0.233	0.633	. 0.944	1.072	1.203	1.258	1.2ア2	1.264	1.249	1.23E	
10.000	0.000	0.237	0.722	1.049	1.216	1.270.	1.20		1.246	1.231	1. ᄅr:er	
12.000	0.000	0.320	0.797	1.113	1.247	1.272	1.257	1.248	1.238	1.2 22	1.219	
14.900	0.030	0.359	0.861	1.159	-1.263	1.269	1.247	1.229	1.224	1.219	1.218	
16.000	0.000	.0.357	0.916	1.193	1:270	1.261	1.238	1.224	1.218	1.213	1.219	

PIXED-EASÉ CONDITION

hOOP THERMAL STRESS-INSIDE,AVERAGE CHANGE

SFACT	TOP	6.14	0. zH	0.3 H	0.4 H	$0.5 H$	$0.6 \mathrm{H}$	0.8	0.8 H	0.9 H	ETM	
	0.253	0.140	0.025	-0.100	-0.232.	-0.371	$\cdots-0.511$	-0.047	-0.742	-0.777	-0.689	
3.000	0.166	0.107	0.044	-0.035	-0.136	-0.263	-0.403	-0.568	-0.708	-0.774	-0.685	
4.000	8.085	0.070	0.044	0.600	-0.048	-6.172	-0.319	-0.493	-0.667	-0.763	-0.6\%1	
5.0000	0.037	0.042	0.038	-0.021	-0.023	-0.106	-0.2.12	-0.4c7	-0.592	-0.756	-0.6ミ: 6	
5.600	0.610	0.023	0.033	0.031	0.005	-0.005	-0.101	-0.278	-0.522	-0.743	-0. 6.9	
8.000	-0.011	-0.005	-.0E0	0.031	0.030	-0.021	-0.0.19	-0.260	-0.465	-0.7ch	-0.68:	
10.000	- 0.011	-0.003	-.012	0.053	0.031	0.033	-0.011	-0.151	-0.405	-0.70?	-0.6.1	
12.0018 14.000	-0.006 -0.003	-0.003	0.003 0.060	0.017	0.022	0.034	$\therefore 0.005$	-0.105	-0.359	-0.685	-0.6s:	
14.090 16.000	-0.003 0.006	-0.002	-0.001	0.003	0.018	0.029	-0.019	-0.066	-0.319	-0.662	-0.686.	
HOOP THE	AL STR	-OUTS	, AVE	CHA								
SFACT	TOP	0.14	O. eH	0.3 H	0.4 H	0. 5H	0.6 H	0.7 H	0.8 H	0.98	ETH	
2.000	0.253	0.149	0.057	-0.042	-0.156	-0.295	-0.481	-0.863 -0.514	-0.886	$\begin{aligned} & -1.113 \\ & -1.064 \end{aligned}$	$\begin{aligned} & -1.311 \\ & -1.313 \end{aligned}$	
3.000	0.160	0.117	0.078	-0.031	-0.040	-0.145	-0.300 -0.139	-e.514	-0.775	-1.020	-1.325	
4.000	0.085	0.076	0.070	0.05s	0.042	-0.054 0.004	-0.139	-8.315	-0.613	-0.981	-1.326	
5.2000	0.937	0.046	0.056	0.053	0.053	0.004	-0.057	- $\mathrm{r}_{1} .244$	-0.548	-0.946	-1.314	
6.000	0.010	0.025	0.043	0.059	0.063	0.057	-8.007	-0.146	-0.440	-0.290	-1.318	
8.000	-0.011	-0.005	0.024	-0.023	0.043	0.059	0.041	-0.076	-0.353	-0. 822	-1.3)	
16.000	-0.011	-0.0.3	-. 0.03	0.011	0.031	0.053	0.013	-0.027	-0.291	-0.769	-1.319	
12.000	-0.006	-0.003	0.000	0.007	0.822	0.046	0.025	. 0.003	-0.231	-0.72?	-1.318	
16.000	-0.000	-6.001	-0.001	0.003	0.012	0.835	$0.0 \% 1$	0.01E	-0.181	-0.696	-1.3:	

FIXER－RRSE CONDITION

HOOP THERMAL STRESS－INSIDE，DIFFERENTIAL CHANGE

SFACT	TOP	0.14	6.2 H	0.3 H	0.4 H	e．5H	0.6 H	0.7 H	0.8 H	0.9 H	ETM
2：000	0.308	0.635	0.891	1.077	1.203	1：279	1.318	1.331	1．327	1.313	1． 295
3.090	－ 8.308	0.699	0.893	1.168	1.233	1.321	1.3 .31	1：320．	1．7．99	1．${ }^{\text {2 }}$ 77	1． T ¢6
4.030	0.308	0.750	1.650	1．225	1.308	1.331	1.321	1.297	1．271	1．2̈49	1．233
5.000.	0.307	0.792	1.101	1． 263	1.324	－1．328	1．305	1．276	1.250	1． 23	1． P ：${ }^{\text {a }}$
6.009	0.308	0.829	1.142	1.288	1.331	－ 319	1．288	1.258	1.236	1.203	1．217
8． 300	6.308	－0．891	1.293.	1.318	1.327.	1．295	1.250	1.235	1．221	1.216	1.215
10.000 12.000	0．308	0.941 0.983	1.214 1.273	1.329 1.331	1.314	1．274	1． 241	$\underline{1.217}$	1． 21.215	1.215	1．E17
14.000	0.303	1.019	1.294	1.327	1.284	1．243	1．． 2 21	1．215	1．216	$1 . E 18$	1．2こ0
16.000	0.308	1.050	1.308	$1 . .321$	1.271	1.233	1．218	1.215	1.217	1.219	1.2 －
HOOP THERMAL．STRESS－OUTSIDE：DIFFERENTIAL CHANGE－											
SFACT	TOP	O．1H	0．2H	0.3 H	0.4 H	0.5 H	0.611	0.7 H	0.8 H	0.9 H	ETM
2.000	－1．693	－1． 391	－1．194	－1．079	－1．026	－1．615	－1．0：30	－1．059	－1．093	－1．126	－1．158
3.600	－1．653	－1．338	－1．133	－1．038	－1．015	－1．633	－1．670	－1．112	－1．151	－： 121	－1．283
4.40	－1．693	－1．297	－1．094	－1．020	-1.023	－1．051	－1．109	－1．153	－1．187	－1．293	－1．2．0
5.000	－1．693	－1．255	－1．067	－1．015	－1．638	－1．089	－1．141	－1．15	－1．208	－1．${ }^{\text {cea }}$	－1．2゙8
6.900	－1．693	－1．237	－ 1.048	－1．016	－1．056	-1.115	－1．16S	－1． 214	－1． 220	－1． 229	－1．229
8.000	－1．693	－1．193	－1．026	－1．630	－1．093	－1．156	－1．139	－1． 221	－1．228	－1． 2 28	－1．2．：6
10.000	－1．693	－1．160	－1．017	－1．849	－1．124	－1．154	－1．216	－1．228	－1．228	－1．225	－1．${ }^{2}$ 2
12.030	－1．693	－1．133	－1．815	－1．076	－1．150	－1．203	－1．2e5	－1． 2 29	－1．2ट5	－1．233	－1． 2 21
14．0．30	-1.693	－1．111	－ 1.017	－ 1.091	－1．171	－1．215	－1．2e8		－1． 224	－1．221	－1． 2 E 0
16.800	－1．653	－1．894	－ 8.023	－1．109	－1．187	－1．2e2	－1．2es	－1．อек	－1．2อ2	－1．2อ0	－1．

VERTICAL．THERMAL STRESS－TETAL EFFECTS

SFACT．	TOP	0.14	0.2 H	0．3H	O．4H	0．5H	0.8 H	0.7 H	0.84°	0.9 H	BTM
－ 2.000	0.080°	0.023	0.073	0.137	0．211	$\because 0.300$	0.411	0.563	0.782 0.713	1.076 1.035	$\begin{aligned} & 1.489 \\ & 1 . E e 5 . \end{aligned}$
3.000	0.000	0.037	0.113	0.192	0.265	－ 0.327	0.407	0.543.	0.713	1.035	$\begin{aligned} & 1.5 e 5 . \\ & 1.477 \end{aligned}$
4.060	0.060	0.055	0.162	0． 261	0.333	－ 6.380	0.417.	O． 497°	0.666	0.984	1．\％U？
5.900	0.006	－0．672	0.208	0.328	8.398	6.425	0.436	0.478	0.615.	0．934．	1．5e2．
6.000	－ 0.000	0.088	0.249	0.384	0.457	0.472	0.454	0.463	0.571	$0.82{ }^{\circ}$	1.459
16.000	0.000	0.116 0.138	6．312	0．468	0.544	0.581	0.568	0.444	0.460	0.743	1.491
12.000	0.000	0.168	0.398	0.564	0.623	0.607	0.528	0.448	0.453	0.696	1.494
14.000	0.000	0.179	0.431.	0.580	0.631	0.618	0.539	0.463	0.434	0.668	1.481
16.060	0.0 ¢ 0 ¢	0.198	0.458	0.597.	0.645	6．621．	0.562	0.497	0.417	0.65%	1.453
HOOP THERMAL STRESS－INSIDE ${ }^{-1}$ TOTAL EFFECTS											
SFACT	TOP	0．1H	C． 2 H	0． 3 H	$0.4 H$	0.5 H	0.6 H	0．7H	0.8 H	O． 5 H	BTM
2.000	0.280	0.387	ถ． 458	0.459	0.485	0.454	0.423	0.312	0.252	0.268	0.363
3.000	0.234	0.163	0.513	0.566	0.568	0.5 E9	0.462	0.376	0.256	0.251	0.255
4.600	0.196	0.418	0.547	0.613	0.630	0.580	2.501	0.462	0.302	0.240	0.2 Cl
5.060	0.172	0.417	0.570	0.642	0.651	0.611	0.532	0.424	0.311	0.235	0.563
6.000	0.159	0.436	0.583	0.660	0.658	0.829	0.55 ？	0.445	0.322	0.233	0.265
8.800	0.148	0.448	0.611	0.674	0.679.	0.645	0.580	0.178	0.349	0.237	$0 . E 67$
10.008	0.143	0.459	0.628	0.676	0.674	0.647	0.596	0.5018	． 8.375	0.244	0.2 b
12.000	0.151	0.490	0.638	0.674	0.655	0.644	$0.6 e 7$	0.533	． 0.405	0.255	0.153
14.000	0.152	0.508	0.647	0.66 ？	0.653	0.638	0.613	0.555	0.429	0.267	C． 2 ¢g
16.000	0.154	0.524	0.653	0.662	0.645	0.631	0.618	0．574．	0.449	0.279	0．ट¢？
HOOP THERMAL STRESS－OUTSIDE：TOTAL EFFECTS											
SFACT	TOP	0.1 H	O． 2 H	0.3 H	0.4 H	$0 \cdot 5 \mathrm{H}$	0.64	0.7 H	0.8 H	0.9 H	BTM
2.008	－0．720	－0．62：	－0．569	－0．561	－0． 591	－0．655	－0．745	1－0．861	－0．990	－1．120	－1．2こ3
3.000	－0．757	－0．611	－0．528	－0．503	－0．527	－0．559	－0．655	－2．813	－0．963	－1．122	－1．${ }^{1}$＇53
4.000	－0．804	－0．610	－0．512	－0．481	－0．490	－0．558	－0．649	－0．77？	－0．938	－1．115	－1．${ }^{\text {－} 5 \text { ¢ }}$
5.000	－0．823	－0．603	－0．506	－0．476．	－0．493	－0． 543	－0．6e5	－0．748	－0．911	－1．102	－1．
6.000	－0．842	－0：60	－0．502．	－0．479	－0．497	－0．541	－0．612	－0．722	－0．884	－1．087	－1．271
5.060	－0．85こ	－0．594	－0．501	－0．494	－0．518	－0．549．	－8．556	－0．684	－0．834	－1．954	－1．37\％
18.060	－0．252	－0．581	－0．504	－0． 513	－0．541	－0．562	－0．539	－0．652	－0．791	－-9.9 ¢	－1．-1.70
12.000 14.000	－0．950	－0．568	－0．50E	－0． 0.59	－0．0．560	－0．575	－0．583	－0．628	－0．759	－0．998	－1．270
14.000 16.060	-6.848 -0.847	－0．55？	－0．509	－0．543	－0．574	-9.584 -0.593	－0．551	－0．612	－0．728	－0．974	－1．Eもう

SLIDING-BASE CONDITIONS

FACT	TOP	0.14	O. 2 H	0. 3H	0.4 H	$0.5 H$	0.6 H	0.7H	0.8 H		0.9 H	BTM
2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.030	0. 60	0.000		0.000	0.000
3.069	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.000		0.008	0.000
4.080	0.000	0.600	- 0.000	0.000	0.000	0.060	0.010	0.0.20	6.000		0.080	0.000
5.003	0.000	0.000	0.040	0.000	0.030	0.000	0.008	6. 7610	0.000		0.090	0.630
6.090	0.000	0.000 0.000	(0.800	0.000 0.000	0.000 0.000	0.000 0.060	O.090.	0.560 0.060	0.900 0.000		O.000	3. 000
10.000	0.000	0.000	0.000	0.000	0.000	0.600	0.000	Q. 060	0.000		0.010	0.000
12.000	0.000	0.000	0.000	0.098	0.000	0.600	0.000	0.060	6.060		0.000	0.000
14.000	0.000	0.000	0.000	0.000	0.000	0.000	-6.000	0.800	0.000		0.008	$0 . \mathrm{CeO}$
16.008	0.000	0.000	0.800	0.000	0.800	0.000	0.600	6.060	0.000		0.030	0.000
PERTICAL	THERMAL'	ESST-	FEREN	TE	CHAN							
iFACT	TOP	O.IH.	0.2 H	0.3 H	0.4 H	6.5H	0.6 H	0.7 H	0.8 H		0.8 H	ETM
2.000	0.032	0.068	0.176	0.292	0.377	0.467	$0.3 \% 7$	0.292	0.176	\cdot	0.068	0.0 .72
3.603	0.052	0.149	0.346	0.547	0.689	0.742	0.689	0.547	0.345		0.1 .43	0.002
4.200	0.041	0.181	0.447	0.739	0.889	0.954	0.839	0.709	0.447		M. 181	0.041
5.000	0.027	0.198	0.515	0.819	1. ${ }^{1}$ 22	1.093	1.822	0.849	6.516	.	0.198	0.0 ¢ 2
- 6.000	0.616	0.212	0.571	0.859	1.113	1.18 \%	1.113	1. 1.369	0.571		0.212	- cis
3.000 80.000	0.062 -0.001	0. 2.273	0.659 0.734	1.607 1.877	1. 216	1.283	1.216	1.367	0.653		0.243	-0.603
10.000 12.040	-0.001	0.279	0.734 0.860	1.077 1.130	1.264	1.325	1.283	1. 1.30	- 0.800		0.313	-2.002
14.600	-0.001	0.356	0.861	1.168	1.290	1.318	1.230	1.168	0.861		0.356	-0.001
16.808	-0.001	0.394	0.914	1.197	1.288	1,303	1.288	1.197	0.914		0.334	-0.col

STIDING-EASE CONDITIOAS

ACT	TOP	0.14	0.2 H	0.3 H	0.44	0.5 H	6.64	0.7H	0.8 H	O.	
					0.000	0.000°	0.890°	0.000	0.000	0.000	0.000
2.000	0.000	0.000	8.000	0.000	0.000	0.000	0.020	0.690.	0.000	0.060	0.000.
3.000	0.000	0.000	-.008	0.600	0.600	0.000	0.000	0.060	0.000	0.000	0.060
4.008	0.000	3.000 0.000	0.000	0.000	0.000	0.080	0.000	6.000	0.600	$0{ }^{-1}$	8
5.068 6.060	0.008 0.008	0.000	0.000	0.800	0.000	0.000	0.000	$0 \cdot 600$	0.00	0.000	
3.600	6.000	0.000	0.000	0.000	0.000	0.000	0.608	a. 0 O	0.000	0.000	0.0
10.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.060	0.000	0.100
12.0000	0.0 cio	0.806	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.060	0.000
14.000	0.060	0.800	0.000	0.060	0.000	0.000	0.900	0.0110	0.660	0.000	0
16.000	0.000	0.000	e.								
HOOP THERMAL STRESS-OUTSIDEIAVERAGE CHIANGE OTM											
SFACT	TOP	0.1 H	0.2H	0.3 H	0.4 H	0.54	0.6 H	f. 7 H	0.84		0.000
2. 008	0.008	0.000	0.000	0.000	0.003	0.008	0.0 .90	9.0610	0.200 0.000	0.000	0.008
3.000	9.040	0.000	0.000	0.000	0.000	9.000	0.000	0.600	0.000	O. 0 OS	- cico
4.200	O. $0^{\text {cou }}$	0.000	0.000	- 0 - 0	0.000	3.000	0.000	0.660	0.900	0.000	0.908
5.000	0.90	0.000	0.000	-. nvo	0.020	0.000	0.0130	0.060	0.000	0.000	0.000
5.000	0.000	0.000	-. 0.0	0.300	0.000	0.000	0.000	0.000	0.603	0.003	$0.0 E 0$
9.000	0.004	3.000	-.060	0.100	0.080	0.800	0.000	0.0630	$0 \cdot 013$	0.0013	0.tivo
10.000	8.000	3.000 0.600	0.660	0.000	0.000	0.000	0.000	0 - ¢0\%	- 0.900	- 000	0.
12.008	6.000 .000	0.000	0.000	0.000	0.000	8.000	0.090	-. 000	-0.008	-.000	-, ne
14.800	-	- 000	0.000	000	0.008	0.008	0.000	0.06			

SLIDING－BASE CONDITION．

HOOP THERMAL STRESS－INSIDE，DIFFERENTIAL CHANGE

SFACT	TOP	0.14	0．2H	0．3H	0.4 H	0.514	0.6 H	0．7H	0.8 H	0．9H	日TM
2．000	0.383	0.729	0.957	1.188	1.301	1.338	1．301	1.188	$0.95 .7$	0.729 0.755	$\begin{aligned} & 0.383 \\ & 0.344 \end{aligned}$
3.020	0.344	0.755	1.062	1．268	1.384	1.422	＋394 +409	1．263	$\frac{1}{1.062}$	0.779	0.331
4.003	0.321	0.779	1.161	1.302.	1.409	1．4425	1．409	1.319	1．132	0.865	－．ड̇u9
5.000	0.369	0.805	1.132	1．319	1.409	1.435	1.399	1.307	1.158	0.832	6.304
6.000	0.304	0.832	1.158	1．3．？	1．393	1．371	1.307	1.332	1．204	0.887	0.302
8.000	0.363	0.887	1.204	1．332	1.335	1.327	1.335	1.332	1.240	$0.98{ }^{\circ}$	．305
10.000	0.365	0.936	1.268	1.328	1.308	1.252	1.308	1.323	1.263	13.980	ごち
14.008	0.3 ¢7	1.017	1.290	1.323	1.286	1． 266	1.	16	1．395	1.063	0.303
16．000	0.368	1.049	1.305	1.316	1.269	1．246			1.3 ES	1.04	－
OP T	L ST										
SFACT	TOP	O，IH	C． 2 H	0，3H	0.4 H	$0.5 H$	0.61.	0．7H＇	0.8 H	3．9H	BT
	－1．629．	－1．297	－1．067	－0．918	－0．836	－0．809	－0．836	－0．918	－1．66\％	－1．297	－1
3.000	－1．676	－1．299	－ 1.064	－0．930	－0．865	－0．845	－0．865	-0.938 -0.954	－1．0651	－1． 1.0 \％	－1．676
4.000 5.000	-1.695	－1．287	－1．061	－0．954	－0．960	－0．959	－0．96．	－0．977	－1．655	－1．${ }^{\text {cti }} 7$	－1．70i
5.000 6.020	－1．702	－1．2645	－1．048	－0．997	－1．003	－1．011	－1．063	－0．997	－1．04s	－1．245	－1．702
8.000	－1．693	－1．2b2	－1．034	－1．031	－1．072	－1．149	1．072	－1．631	－1．034	－1．265	－1．535
10.0013	－1．696	－1． 165	－1．025	－1．05？	－1．12	－1．149	．1．155	－1．079	－1．021	－1．136	－1．Eヲ ${ }^{\text {a }}$
22.000	－1．691．	－1．136	－1．021	－1．698		－1．1809	－1．179	－1．098	－2．021	－1．112	－1．6：33
14.000 $16: 000$	－1．693：	－1．192	－1．021	－1．698	－1．196	－1．223	－1．196	－1．115	－1．025	－1．094	－1．c＇s3

APPENDIX B
FUNDAMENTAL PERIOD OF VIBRATION OF THE INORTIA COMPONENT OF A RECTANGULAR TANK (T_{I})

TI for an at-grade rectangular tank can be roughly estimated using a lumped mass/hypothetical column type model.

(a) Rectangular tank of wiath B (b) Hypothetical column model. FIGURE B1: TANK/MODEL SYSTEM

The fundamental period T_{I} is given by:

$$
T_{I}=2 \pi \sqrt{M / k}
$$

where

$$
\begin{aligned}
M & =M_{W}{ }^{\prime}+M_{I^{\prime}} \\
M_{W^{\prime}} & =\text { mass of water per unit width (kg/m) } \\
& =\operatorname{Ht}_{c} \text { (} \rho_{c}=\text { density of wall) }
\end{aligned}
$$

```
\(M^{\prime} I^{\prime}=\) half of the impulsive mass of contained liquid per
        unit width ( \(\mathrm{kg} / \mathrm{m}\) )
```

$$
=\frac{\left(W_{I}\right)}{W} \text { He } f_{L} \quad\left(P_{L}=\right.\text { density of liquid) }
$$

$$
\frac{W_{I}}{W} \text { can be obtained from figure } 2.2
$$

$$
k=\text { flexural stiffness of a unit width cantilever }
$$

$$
=\frac{E}{4}\left(\frac{t}{h}\right)^{3}(N / m)
$$

$$
h=\text { effective height of } M
$$

$$
=\frac{h_{W} M_{W}{ }^{\prime}+h_{I} M_{I}{ }^{\prime}}{M}
$$

$$
h_{W}=\text { centre of gravity of wall }=H / 2
$$

$$
h_{r}=\text { height of impulsive mass }
$$

$$
\frac{\left(h_{I}\right.}{H} \text { can be obtained from figure 2.2) }
$$

WORKED EXAMPLE

liquid $=$ water $f_{L}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
concrete tank $\quad P_{C}=2400 \mathrm{~kg} / \mathrm{m}^{3}$

$$
2 \ell=20 \mathrm{~m} \quad \mathrm{H}=6.0 \mathrm{~m} \quad t=300 \mathrm{~m} \quad E_{c}=25 \mathrm{GPa}
$$

$$
M_{W}=\text { Ht } P_{c}=6 \times .3 \times 2400=4300 \mathrm{~kJ} / \mathrm{m}
$$

$$
M_{I^{\prime}}=\frac{\left(W_{I}\right)}{(W)} \quad H P P_{I}=0.36 \times 6 \times 10 \times 1000=21600 \mathrm{~kg} / \mathrm{m}
$$

$$
\frac{W_{I}}{W}=0.36 \text { for } \frac{l}{H}=1.67 \text { in figure 2.2) }
$$

$$
M=M_{W}^{\prime}+M_{I}=25900 \mathrm{~kg} / \mathrm{m}
$$

$$
h_{I}=0.385 \text { H (from figure } 2.2 \text { for } \frac{e}{H}=1.67 \text {) }
$$

$$
=0.385 \times 6=2.31
$$

$$
\mathrm{h}_{\mathrm{W}}=0.5 \mathrm{H}=3.0 \mathrm{~m}
$$

$h=\frac{h_{W} M_{W^{\prime}}+h_{I} M_{I}}{M}=\frac{3 \times 4300+2.31 \times 21600}{25900}=2.42 \mathrm{~m}$
$k=\frac{E}{4}\left(\frac{t}{h}\right)^{3}=\frac{25 \times 109}{4} \cdot\left(\frac{.3}{2.42}\right)^{3}=11.9 \times 106 \mathrm{~N} / \mathrm{m}$

$$
T_{I}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}=2 \pi \sqrt{\frac{2590.0}{11.9 \times 10^{6}}}=0.29 \text { seconds }
$$

M.J. Abernethy
W.R. Andrew
S. Ashby
M. Bloxham
H. Brookie
G. Bycroit
P. Charlton
S. Clark
I. Connor
G. Dempsey
F. Dennis
M.A. Gordon
I.W. Goss
L. Greenfield
P. Greenway
R. Gross
S. Guillemin
D. Harding
G.M. Hughson
R.S. Jarrat
D. Kirkland
B.S. Lobb
S. Macdonald
M. Marinan
A. McGaughran
N.R. Melhop
R. Modgill
N.J. Morgan
A. Mortimer
C. Mundy

MWD, Wellington
Worseldine \& Wells, Nelson
Firth Stresscrete, Panmure, Auckland
Murray North \& Partners, Hamilton
Brickell Moss Raines \& Stevens, Wellington
Lamont Bycroft \& Partners, Wanganui
Beca Carter Hollings \& Ferner, Auckland
Murray North \& Partners, Rotorua
Morrison Cooper \& Partners, Christchurch
Frederick Sheppard \& Partners, Wellington
R.W. Morris, Christchurch

Waimairi District Council, Christchurch
R.W. Morris \& Assoc., Christchurch

Christchurch City Council
Frederick Sheppard \& Partners, Christchurch
Auckland City Council
Blewett Waite Jeffs and Carter, Auckland
Alan Reay Consultants, Christchurch
Wellington City Council (Works Department)
Smith Leuchars Ltd, Wellington
Holmes wood Poole \& Johnstone, New Plymouth
Milward Fougere Finlay \& Lobb, Timaru
Macdonald \& Associates, Blenheim
Spencer Holmes Miller Partners Itd, Wellington
Timaru City Council
Consulting Engineer, Christchurch
New Plymouth City Council
Structon Group, Wellington
Brickell Moss Raines \& Stevens, Auckland
MWD, Ballantrae Place, Wellington
W. Page
D. Preston
J. Smialowski
M.H. Smith
D.C. Stewart
T.B. Steven
R.D. Sullivan
P. Thompson
R.J. Twiname
N.M. Taylor
C. Welling
J. Wemyss

Sanders Lane \& Page, Nelson

Royds Garden, Christchurch
Bruce Henderson Consultants, Tauranga
F.R. Smith \& Associates, Christchurch.

MWD, Auckland
Murray North \& Partners, Auckland
Consulting Engineer, Christchurch
Civil Engineer, Lower Hutt
D.C. Airey \& Partners, Takapuna, Auckiand

Royds Garden, Christchurch
Hutt Valley Drainage Board, Lower Hutt
Sanders Lane \& Page, Nelson

Parbay: Concrete Steer Walls
(1) Design For Mexure
(ii) $0.75<p e<16 / \sqrt{3}$
(ii) when $i_{i}>0.3 \sqrt{x_{c}}$ use trolagers.
(i.) $\quad d b<b_{0} / 10$.
(iv) $b>\ln / 10$ in endregrion aving.

- onf of glare bwithing can decur at relatiog lau loads.
(v) use lead redistribution if desired $\measuredangle M \leqslant 0.3 M_{\text {mat }}$.
(u) From $\frac{P_{u}}{A_{g} f_{c}^{c}}$ find ϕ.
$0.7 \leqslant \phi \leqslant 0.9 \quad b_{0} t b_{y} \quad 10.5 \quad \phi=0.9$.
(viii) $\mu_{i}=\frac{\mu_{n}}{\phi}, P_{i}=\frac{P_{n}}{\phi} e=\frac{\mu_{i}}{P_{i}}$
(vii) with tiod t e eron, fird (C) arrt area of vertical haus.
(ix) Find flexuwd overstrength of base section

$$
\begin{aligned}
M \text { baxit on } \begin{aligned}
F_{S}^{x} & =1.25 \times 275 \\
& =1.4 \times 380
\end{aligned}
\end{aligned}
$$

(x)
$\phi_{0}=\frac{\mu_{0}}{\mu_{\text {cole }}}$ for erch wall
Cleck forsthergin $\phi_{0}>1.25 / \phi=1.39$

$$
71.40 / 4=1.56
$$

(xi) compare $\subseteq \operatorname{ard} c_{c}$

If $c_{c}=0.10 \phi 0 s e_{w}>c$ isconfremat $<c$ cofin consede.

$$
\left[\begin{array}{l}
\text { - when } c>c_{c} \\
\text { con funed } l_{\text {engh }} \geqslant x c \\
\quad \alpha=1-\frac{c_{c}}{c} \geqslant 0.5 .
\end{array}\right.
$$

- Hsse use $\phi_{0}{ }^{*}=$ globid owestrentin frotor. \&e whole bidg rot justhis.ach
(xi) curtrilment of vertical Plesural reifforcemat - will not be sane as $3^{\text {rediader parebola inpliedby }}$ Code Joads
if cut of steel to metch enneiope, phinge can occur anywhere, so reed extia conficienant sted thoughoat the wall - cteoper it use estra vert stucl Ef foice p'hinge $\frac{1}{b}$ oucur of base, $\theta v_{c}>0$ i $S_{\text {ody }} \mathrm{s}^{t}$ wall, less shear reif reegd in booky of watl.
(4) Define errl region $l_{\rho}>l_{w}$

$$
>4 n / 6
$$

(6) Confine erat region.
(i) when $c x_{c}$ con fre outer'/2
(ii) $A_{\text {sh }}=0.12 \sin \frac{115 \ll c}{\sqrt{3}}\left(0.5+96 \frac{c}{Q_{2}}\right)$
(iii)

$$
\begin{aligned}
& \text { or } E_{q} \quad 10-5
\end{aligned}
$$

$$
\begin{aligned}
& \text { amt when } p_{e}=\frac{\lambda_{3}}{b s_{v}}>\frac{2}{\sqrt{3}} \text {. }
\end{aligned}
$$

don'tspace heing steer reif too foar $\$ 300$?
 bw?
(7) Design for stear.
(i) $U_{\text {crall }}=$ wiot $\phi_{0} V_{\text {code }}<\Psi U_{\text {rodul }} / \mathrm{s}$.
(i) $v_{i}=\frac{V w_{c} l l}{8 l_{w} b_{w}}$

$$
\phi=10 \mathrm{frcopan} / \mathrm{s} \text { des.jin }
$$

(ii) $v_{i}<\left(0.3 \phi_{0} 5+\cdot 16\right) \sqrt{C} \leq 0.9 \sqrt{\text { posed }}$

$$
\text { if } s=0.8, \phi_{0}=1.4 \quad v ; 20.4 \sqrt{F C}
$$

recessung to moid shear faiture.
\rightarrow this is wey $\begin{aligned} \text { often citical } i=~ a ~ c l e w ~ s t e a r w a d t . ~\end{aligned}$

$$
\therefore \quad v_{c}=0.6 \sqrt{\frac{P_{c}}{A_{J}}}
$$

(*) $\quad A_{v}=v_{i}-v_{c} b_{i s} / m$
mey use deforined benes with appoopitate hooks.
(8) Splices
(1) not more than 33 p over lp -nacuaitbeble to tone then but showld be streggeech
(i) stegger bs moee thay $2 e_{d}$
(i,1i) porrde tremsu...eif hes if $d b \geqslant 16$

$$
\frac{A_{t_{r}}}{s} \geqslant \frac{8 d s}{f_{5} t}
$$

stee-friztion to tra-sfer tie force o lapp reachs doum
(a) Elestiz regions of wall
(i) Check Fiexural coprects with Pi aycuinst limean monet dirgnon
(ii) reduce ioxil thiekiness

$$
e_{m / b}>10
$$

wi <ong fic or 60 ma .
(iii) reduce sheor resforcement

$$
v_{c} \geqslant 0.27 \sqrt{f i c}
$$

dowatic shwif- reluetion normal.
(ii) redica tra-sucse ties.
(\because) ase nomial tas whem fis $<0.5 f_{3}$ (constructionties) and when $5 \geqslant 4$.

STRUCZORAR LAAKLS \& A SUMMARE4

- isncerrashing
- drag. kensia faiture.
- slidinj shear ej?
- good anergy dissipatiom.

Coupled Wails

- colticeí abeas
- conplay beoins
(27
(21)
(58)
(6)
- applicakom.
(123)

Floorslitbs \& DIAPIARAGMS
Piof. Pauk.
Flư'slass shauld not be used forserbaic resistance
DCthl stear dreoreg is high

- difficalt to get ductile cornectios, strejg degratos modian

Mary appooctes to dosign.
(1) 11.5 Elastic thin plate theons.
reed elaste computer programs unsciz/ forcomples systiens compueir will gici . Mx, My o May
$h_{2 y}$ should ret be iogrorect.
pounche M_{x} cap-ats $=M_{x}+\left|M_{x y}\right|$ as incommentany. simple prosedures for allocating rentorzement.
(2) Momat iseficient tables.
elashe theory grüs lorge momat voriotionse it is difficult to madel these with steel cothfis.
nounet coeft tables alloned for sorre redistribution.
(3) Limit Design

- look ef nithzate streyth
(at) yield lié Heory - Johanssen
(b) strip nethod - Hillex-borgor

Mlleriza better fer design Johasson, for andysis.

- not tol what ratios to use for mxi $\theta \mathrm{m} x$ if ratios used diff to alestiz, can get significant craitisy urdor servize loads.
- code says somewher between 102(c11.6), slabs arevery flerati \& wiote variatiuns cuill give sarisfaitong designs.
\Leftrightarrow Code Pording Morret Coeficiants - arederned from yuild liee theiry.

Direat Design tivthed. Equiradat frame inothed $\}$ vied widely in USA.

Section 11 of "Applrcation of $N 2 C=0$... >101:1982" inclutes design exiamples by all mathads o shows veriation in dosign BM's which result on P3\%.
indicales these are tolerant animals. - doc't waing sibowit Hese different answers.
but how much diffecen in sevice load diblection exprectest
 is a builaing, due to meanbrare action due to s-ppent, tensile ord compressume) from the survarraing dic, hrregm. Deflections may be 2 z. 3 tinies stais depth.

Stressoncte $=$ Arebitad $=$ connection beiwein plc slots.

car pestess slabs fo lower lewels to mi-nise differtiat diflation. Can poop the slobs it aqual dulacitese before bupong.

Applications of Design Chants a Comarto- Programs For Reitif.Carc.
(1) NzReif Cone Haribook

Column Desigis section:
Developerent section:
L Gareoty
Now stad sheryth iomoxy coith revised charts to follow note amediment to 3iol: 5.3.7.2(c) wich gius l_{d} less Ken ias lay as sowntines.
(2.) Hinicompater programs

Concol 1
Leatherm Arobewis.

Cancol 2
Keribotz halder $\$ 175$.
Drect desist for rectarguies, circular section inpat column dimensions, N, P, giès As output.
(3) Dawed King pregrom: Conciete Colum Prograins.

NECRA tinaz to deciole whet to do winh it.
Onimxial, Biaxtal, squen, iectraghbas cinxular.
Con use the "Mandor madel' for shess/strai cume insterad of ACI sbess model. - gacss less sted, smadercationnas. for confriedi acrecte, not uneoufined conc."
Can use ong robrum section.
(4) ETABS

Jeffilleden Hecipos.
duebored is Berineley Callf,
HeNPS ar seltes $\$ 2000-89000 \mathrm{im}$ 640 kB Rim Mededise i Nojag dise dive.

- not an interactive system
- useditor to recel díta file.
- gies echo file 6 the m-s if

IBnPC $20 \mathrm{~m} B$ had dise -storaze pidutirm so not enoigh space to quene jobs op overnight. reats 5 uith fort rion sompletely.

Pist pugramm poptoms from usA avzitrble for steq hesigh,
 Ameriea Cades.

ETABS '84'
SUPER ETABS hres mane iptions.
Past processer plotter is $\quad \Rightarrow-D$.
Sfpriso also mivable.
Rat slab pregromen SAFE which thers Fi-ide dernatslabamigys.
(5) ENC Philip. Thoimpson

XSEC
lanate cross-secition decigh
decide on a cooss scita, pregromme ailli pat in steck.

Sfrusturen for storege of Itguids
Frections
 all stereses pressures caurréd by Moop Action.
pin or freed base diflection pation is modifred guvion vertical curratures and BM'S. Usuilly refeerlo tables to get desione Bu, M's. Resist part of lasd bay hoop tiusion.
Ftind loads:

resiciund pressure tateen by ievtical berding.
total loorils.

- can do speaticic desigun an compurter, rather than use tables. iesign for a luintur foundation.

Contiouors
wainter $\mathrm{Fl}^{\prime a}$

winder 2 Id fl^{a} - frame conalogg uptolostruts.

$$
\frac{A_{i}}{e_{i}}=\frac{t_{1}+t_{2}}{2_{a}^{2}} \cdot \Delta h
$$

Verical BMcs $=M_{v}, f_{v}=\frac{ \pm 6}{t^{2}} \cdot M_{v}$
Themol lords:
(i) inside temp. reasoorably stable = water temp. outsite o radiant that on sunnys ith

Pump hot witer into storage tank, insite temp anill be hister then entside which gives opposie temp gredient.

Tempcharge induces defomitions, wish are restrininet i so steses are inducied
stesses and depothent an Marteial of constrvatia,

$$
\text { Themad Mounat }=M=M_{4} \text { expt } I \psi\left(\frac{\alpha \theta}{t}\right)
$$

(I) $I=I_{\text {groses }}$ or Icraitead
\& I creited varies with tamperature, histey, position,
Fig 3 provites cornde opproxination for BM eliff by cratiting.
(E)

$$
\begin{aligned}
E_{c} & =4700 \sqrt{P} \text { is a lower bound. } \\
& =5500 \sqrt{f R} \text { mee lifhel, with } F_{C}^{\prime} \leq 14 \times 5 p e c i \text { aler Zgus. }
\end{aligned}
$$

(2) $6 \times 10^{-6} \mathrm{per}^{\circ} \mathrm{C}$ to $14 \times 10^{-6} \mathrm{per}$

Shrinkoge o Suellest

- canse stesses, come what offset by aeeip as they saimestowing. sove expotis say ok to ignare ang rett effect.

Seismic respouse
based on curmat recommedetions if NZSEE.

$$
\begin{aligned}
& F=F \propto \theta[\pm, A]
\end{aligned}
$$

upper masses ret rigity liantedt various sloching inedes
lower masses effecturely bented to mace with wails - ngitlly intreat
Table gius retios for flund mases and Lovighs.
large peniods fypicat for matural sloshas, \hat{E} to $^{\prime} 12$ secs Fig6. advantage to ise new code to ase lower specimai ciccel?
Praticatities
nech to dualor steer ard uplit fores at wad bage for seitimie loctings.

- Hermal lort's cion ly preato than water fouds
- seibunic lociis also of simitar to aveler loozt, but normolly higher at the top of the rinit.
- more sensible loct iombintions of loani cases ciciroded in the cable
- pestessios = stoss wall be move it in at base, the find it at
 but base will wot \rightarrow le-tical BM o some reduction in prostress at the base
- may consiber i-scitutong the tank to reciuce thamat stresses imposed

BUI.MAD249.0469.34

Walls of limed ductiting

- Squat shear walls low is shea intrainced alory the fos eige?
diragoral iompression stuat

put enengh stexs renf in on will fail in plexure

flamged wall mot recessonng. bitter as extraflerewnal sted meaios if ${ }^{T r a i l s}$ in sheas.
this

sindy use diagonal resiforcemat. Weth's is better -2 asesn'taid
as it do
to the Rexural strongti,
this

this retis to pexaraistrejthalso. nes?

Foundations
Parday
if reaction is witherdepth of wedl ca cuse peods

if have piles these can resist mount

 evertreyin of stimture θ apply to Sontixion; so that it idedly remains elaste.

Deesn't lite ihe of guilding ocurnig amber anoderate EO, whee if is difticalt to repain or inspeit.
if on a blourday, hook i frist vow of columus

cou gat fixity from a busement wall

 maybe diagonal renforiount
possithe to design harges ito the fourition bem.

this rootas designert buguid - ne duraktto design reeded is the ivell.
wouldn't lite of se it siting permanth below viout fable -

Repain
don't enpect mojer dermajeg ofer moduate Ea.
fodies wreichet in lab trawe been given, $\mu=6$ or 10 wo no cooder Hayg are in a bad woing
 wang hare some cow courrete yodert if

This can readity be repained, epoxed. $Q_{\text {mith }}$ Fllen the really, wretted specimans in the tab tave bea arezerred, an retestal. They, have performed again beitethan the onginals!

Naosted tests
Paifizt-all stai is tested. all is at least hai sparified, thax below is thrown out

Protroscosp couldase 5% as cterciterstic benghty not the absolvte 9225 inisioncon:

actuat unimes of gineld stargth.
Com do unomest-urvative analysiis.

Fixamal owshergth faotortho $\frac{M_{\text {max }}}{M_{i} \text { deal }}$
 $=1.30$ at $1 / 3=15$.

$$
\begin{aligned}
\hat{4} 380 \quad M_{0} & =1.52 \text { at } \$ / x_{3}=10 \\
& =1.60 \text { at } \phi / t_{y}=15 .
\end{aligned}
$$

HERA INFORMATION CENTRE

\star NEW RELEASE
New Zealand Heavy Engineering Industry Achievements in Recent New Zealand Major Development Projects. This publication reflects the development of heavy engineering since 1981 and illustrates industry accomplishments during recent major projects. A complementary publication 'Heavy Engineering Facilities in New Zealand" provides information of company capabilities and main products, manufacturing resources and contact in formation. Both publications are now available FREE from HERA.
Ref. 2

PERSONAL COMPUTER SOFTWARE FOR STRUCTURAL ENGINEERS

HERA is currently negotiating with two Californian programmers involved in the development of structural software packages. The intention is to adapt existing programmes for use in New Zealand and a major announcement on this subject can be expected shortly.

BACKGROUND

A designer in California has access to software for individual steel member design, to the relevant U.S. codes. This software includes capacity design methods for high ductility demand structure (e.g. ductile moment resisting frames).
Furthermore the strong column weak beam philosophy is generally adhered to, with emphasis placed on flexural type inelastic structural systems rather than shear type. Thus their seismic design philosophy is similar to ours, with differences in detail only.
Also researchers in the United States are at the forefront in development of seismic design procedures and recommendations for braced frames. Therefore design

Publications from Australian Institute of Steel Construction.
Safe load tables for structural steel metric units 5th ed. \$36.
The tables cover the range of structural sections generally available and commonly used taken from the Australian Stan-dards:-
AS1131: Dimensions of hot-rolled structural sections.
AS1163: Steel hoilow sections. Ref. 3
Source book for the Australian steel structures code AS1250 by M.C. Lay. 3rd ed. $\$ 18$.
The purpose of this book is to provide back-ground data, explanations and reference sources for those Rules of the Australian Steel Structures Code, AS1250, whose origins and reasons for inclusion are not immediately apparent.

Ref. 4
procedures and recommendations for braced frames are largely based on U.S. recommendations. Thus a programme writter for braced frame member design to U.S. codes and design practice, as well as for ductile rigid frame member design, is likely to be adaptable to New Zealand codes and design practice without too much difficultly.

U.S. DEVELOPMENTS

Computers and Structures Inc. of Berkeley, California are regarded as market leaders pertaining to state-of-the-art structural analysis and design software for personal computers.
They have developed SAPB0 a general purpose static and dynamic finite element analysis programme, and ETABS, a special purpose static and dynamic building analysis programme.
Along with the recent advances in microprocessor technology there has been a dramatic increase in the use of the SAP80 and ETABS programmes. These software packages are now routinely used on personal computers for the analysis of a wide variety of small and large systems, having anywhere from 10 to 10,000 equations.
Part of the ETABS System is a steel design postprocessor programme called

Standarized structural connections. 3rd ed. $\$ 52.50$
The object of this manual is to provide a rationalized approach to the design, detailing and fabrication at structural steelwork connections.

Ref. 5

Design of structural connections by T.J. Hogan and I.R. Thomas. 2nd ed. $\$ 40$
This manual sets out a design basis for a range of commonly used structural stee! connections.

Ref. 6

Bolting of steel structures by A. Firkins, and T.J. Hogan. 2nd ed. \$9
This publication is intended to provide a state-of-the-art summary of the use of bolis in steel structures.

Ref. 7

STEELER. The programme performs a member design analysis based upon AISC recommendations and incorporates current United States seismic design philosophy in the calculations. It can be used on a very wide variety of structures, including concentrically and eccentrically braced frames, ductile moment resisting frames and would have immediate application to all types of steel structures currently designed in New Zealand.
The programme operates by taking the output files from ETABS. It then performs the design process, based on the user specified member properties used in the analysis of the frame. The output is a stress check of all members, plus any stiffener, doubler and continuity plate requirements. The user can then change members if desired and re-run STEELER without having to re-run the ETABS programme.
The hardware requirements to operate the system are as follows:-
OPERATING SYSTEM MS/DOS 2.0 or later by Microsoft

COMPUTER (Minimum requirements for CSI programmes)IBM, PC/AT, IBMPC/XT or IBM PC with one 360k floppy disk drive and one 10,20 or 30 megabyte hard disk; or IBM compatibie machine.
RAM (Random Access Memory) - 640K Math coprocessor chip - 8087 for IBM PC/XT,80287 for PC/AT

PRINTER

Programme output can be printed on any printer which is compatible with your computer. A hard copy of the screen graphics produced by the graphics programme may be obtained on dot matrix printers which are "IBM graphics compatible".

Ref. 8

10th Floor 20 Martin Place Sydney 2000

Tel: (02) 277405

Release of MSC/pal 2

MSC announces MSC/pal 2, a three-dimensional finite element analysis software package for engineering applications that runs on IBM PC XTs, ATs, and compatible. KSC/pal 2 is an advanced version of MSC/pal, the popular $P C$-based finite element analysis software released by MSC in the lazter half of 1984.

MSCipal 2 performs static and dynamic analysis for models with up to 1000 grid points. its element library includes: quadrilateral and triangular plate elements; several types of straignt and curved beams; discrete springs, masses, and dampers; shear panels; and plane-stress and planestrain two-dimensional plate elements. Its solution capabilities inclute statics, normal modes, transient response, and frequency response analysis. A bandwidth minimizer is integrated into MSC/pal 2 to reduce memory requirements and to increase execution speed. Double-precision arithmetic in all cperations ensures numerical accuracy.

Interactive post-pruzassing capabilities include: stress and displacement output for all solution types; structure geometry plots with. rotation, scaling, and element shrink features; deformed structure plots with stress and displacement contours and animation; and $x y$ plots for dynamic displacements, velocities, accelerations, and response ratios.

Advanced features with the MSC/pal 2 package allow the user to graphically sort static stress output for easy visual identification of highly-stressed elements, as well as file input/output features to allow transferring MSC/pal 2 data to/from external programs. The ability to convert a model file from MSC/pal 2 to MSC/NASTRAN format is included to allow running a model on larger computers; all static and dynamic load files may be translated as well. The entire MSC/NASTRAN data file is generated, including the Executive Control, Case Control, and Bulk Data decks, making MSC/pal 2 an ideal educational tool for learning MSC/NASTRAN.

Machine requirements include an IBM (or IBM-compatible) PC XT or AT (a herd disk is required), PC OOS 2.0 (or higher), 512 K memory, and an 8087 (80287 for the AT) numeric coprocessor chip. An IBM (or compatible) color graphics card is required for graphical output, and an Epson (or compa:ible) graphics printer is required for hard-copy of graphics. Any dot matrix, letter quality, or laser printer is acceptable for hard-copy of tabular output.

D2 3106 (CPT KMcI 6)

$$
\begin{aligned}
& \text { Cl.l.3 } \\
& \text { For liquids having a detrimiental effect on concrete. aporopriate } \\
& \text { special precautions may include the provision of linings imper- } \\
& \text { vious to the liquid to be contained. Particular attention should } \\
& \text { be paid to any joints in the lining which must remain impervious } \\
& \text { for the iife of the structure, for much damage and even collapse } \\
& \text { can occur before a leak is detected. In tanks where auch imper- } \\
& \text { vious lingings are used, the allowable stresses of the alter- } \\
& \text { native design method of NzS } 3101 \text { may be used in lieu of those of } \\
& \text { this Code. }
\end{aligned}
$$

$T \cdot \boldsymbol{H}^{\circ} \mathrm{t}$
Roofs 1.4 1.3.1
Support structures for elevated tanks shall be designed to the
requirements of N2S 4203 together with an appropriate design code
for the material to be used. Support structures 1.3
 6.4.1". Standard quote the number only, for example: "... as required by 1.2 .2
Cross
to be adopted in order to comply with the Standard, while the
word "should" indicates a recommended practice.
DZ 3106
(CPT KMCI 6)
vided that other meanings for symbols that are defined immediately adjacent to formulae or diagrams shall apply in relation to those formulae or diagrams only:
a Radius of circular tank, m
A The design loads, or their related internal moments and forces, resulting from a combination of group a loads.
Ao Peak horizontal ground acceleration coefficient (see ..
2.2.9.3)
b One half of the width of a rectangular tank, perpendicular to the direction being considered, it
B The design loads, or their related internal moments and forces, resulting from a combination of group i loads.
c Temporary loads, or their related internal moments and forces, occurring during construction.
c_{C} The horizontal convective seismic coefficient.
C_{I} The horizontal impulsive seismic coefficient.
C_{T} The axial force induced in a circular wall due to a tem-
perature gradient through the wall, N .
Dead loads, or their related internal moments and forces.
Earthquake loads, or their related internal moments and forシ்

 －seosoj pue squәwout

The specisfed yield strength of nc：＝iestressed reinfor－
cement，MPa．

－Rdw＇j00x
resulting from a temperature gradiant through the wall or
The fibre stress on the inside face of a tank wall or roof concrete or cement mortar，MPa．

The square root of the specified compressive strength of Specified compressive strength of concrete or cement mortar，
MPa． from backfilled earth pressure．

The loads，or their related moments and forces，resulting
The vertical component of E ．
Modulus of elasticity of prestressed reinforcement，MPa．
(9 IDLX JdO)
90 TE za
${ }^{h} C$ The height of the centre of gravity of the convective hori-
h_{I} The height of the centre of gravity of the impulsive horizontal force exerted by the contained liquid, m.
The height to the centre of gravity of the tank shell, m.
The height of the tank wall to the surface level of the ilquid, m.
l One half of the length of rectangular tank in the direction being considered, m.
Live loads, or their related internal moments and forces.
M The total overturning moment acting on the foundation or suppart structure, N m.
M_{B} Overturning moment on the floor of a tank reaulting from hydrodynamic seismic pressures, N m.
M_{BC} The corvective component of MB, N .
${ }^{M}$ BI The impulsive component of MB , N . .
M_{W} Overturning moment acting at the foot of the tank wall, Bm .
M_{T} The moment induced in an element due to a temperature gra-
11

901820
$\mathrm{H}_{\boldsymbol{\Lambda}}$
$\mathbf{V}_{\mathbf{C}}$
$\mathbf{I}_{\mathbf{J}}$
${ }^{T} \mathrm{C}$

The thickness of the wall or roof, m.
Loads, or their related monents and forces, resulting from
swelling. shrinkage.
Loads, or their related moments and forces, resulting from
Risk factor as defined in NZS 4203.
The radius of a dome roof, m.
Sq pasnpuf suoţeuxozap pue səoлoz д0exazunos oz pepysoxd
'gavdof pue squauou pazetex 87f do 'peot burssax saxd ayl
7e pinbit poupezuos aч7 зo oxnssexd oṭrefos ofureuxpoxpKy aus

\because
(9 10hx Laว
9078 2 a

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{I}} \text { The impulsive component of } \mathrm{VH}, \mathrm{~N} \text {. } \\
& \mathrm{w} \quad \text { Maximum load (dead plus live) for unit area on dome roof, } \\
& \mathrm{N} / \mathrm{m2} \text {. } \\
& \mathrm{W} \text { Wind loads, or their related internal moments and forces. } \\
& \mathrm{W}_{\mathrm{C}} \text { The equivalent weight of the convective contents, } \mathrm{N} \text {. } \\
& \mathrm{w}_{\mathrm{I}} \text { The equivalent weight of the impulsive contents, } \mathrm{N} \text {. } \\
& \text { W The weight of the tank shell, including the roof if con- } \\
& \text { nected to the walls, } \mathrm{N} \text {. } \\
& \propto \text { Linear coefficient at thermal expansion. } \\
& \text { (alpha) }
\end{aligned}
$$

A A constant depending on the shape of a tank usod in
(beta) determining seismic pressure (see 2.2.9.5).

$$
\begin{aligned}
& \gamma_{\mathrm{L}} \text { The weight densi+: of•1iquid, } \mathrm{kN} / \mathrm{m} 3 \text {. } \\
& \text { (g*minc) } \\
& \text { E=h Shrinkage strain. } \\
& \text { (eps(lion) }
\end{aligned}
$$

$\varepsilon_{s w}$ Swelling strain.
θ Change in temperature at a point in a tank wall, ${ }^{\circ} \mathrm{C}$.
(theta)
1.6
Definitiona
1.6 .1
 Speciailzed definitions appear in individual sections.

ELEVATED TANK. A liquid retaining structure which is elevated
above grade by a support structure. - วาวมจทัจ relationships between stress and strain for reinforcement and ELASTIC ANALYSIS. Analysis based on the assumption of linear initial maximum load carrying capacity. DuCTILITY. The ability to a structure or member to undergo
repeated and reversing inelastic deflections beyond the point of
first yiel.d while maintaining a substantial proportion of its
detailed to ensure adequate strength and servicability. CONSTRUCTION JOINT. An intentional joint in concrete work
 CONCRETE. A mixture of portland cement or any other hydraulic hydraulic cement, sand and water. CEMENT MORTAR. A mixture of portland cement or any other

BONDED TENDON. Prestressing tendion that is bonded to concrete
either directly or through grouting.
the prestress force is permanently transferred to the concrete. ANCHORAGE. See Section 5 of NzS 3101. Also, the means by which -ә7әдจuos әonpoxd of 1ә7em pue AGGREGATE. Inert material which is mixed with portland cement

DZ 3106
(CPT KMCI 6)
the holder of a current annual practicing certificate; his deputy or assistant appointed by the Local Authority to control the erection of buildings.
FREEBOARD. Additional wall height above tank overflow level.
MOVEMENT JOINT. A specially formed joint intended to accommodate relative movement between adjoining parts of a structure.
Partialiy prestressed concrete. Concrete in which prestressing is used to provide part of the reinforcement requirement, and where cracking of the concrete is permitted under specified design load combinations.
POST-TENSIONING. A method of prestressing in which the tendons are tensioned after the concrete has hardened.
PRECAST CONCRETE. A concrete element cast in other than its final position in the structure.
PRESTRESSED CONCRETE. Concrete in which there has been introduced internal stresses of such magnitude and aistribution that the stresses resinting from loads are counteracted to a desired degree.
PRE-TENSIONING. A method of prestressing in which the tendons are tensioned before the concrete is placed.
REINFORCED CONCRETE. Concrete containing steel reinforcement, and deaigned and detailed so that the two materials act together. in resisting forces.
REINFORCEMENT, DEFORMED. Round deformed reinforcing steel con-
forming to NZS $3402 P$.

swelring. Tensile strain of concrete resulting from absorption
of moisture.
TANK. Structure designed for the containment and storage of
liquids.
TENDON. Stee? elements such as wire, cable, bar, rod, or strand
used to impart prestress to concrete when the element is
tensioned.
SUPPORT STRUCTURE. A structure supporting a liquid retaining
structure at a required height above grade. required by Section 6 of NZS 3109. of compressive strength which meets the production standards class for purposes of design and construction. It is that level by the symbl f ' c which classifies a concrete as to its strength strength normally at age 28 days unless stated otherwise, denoted SPECTFIED COMPRESSIVE STRENGTH OF CONCRETE. A singular value of

-dZObE SZN 07

(9) 10wx La $)$

DZ 3106
(CPT KMCI 6) clause 2.3.2 of this code, ultimate behaviour should be satisfactory.

All connections of wall with floor and roof exert some measure of restraint that affects wall degign. Particular attention should be given to the translation and rotation restraint the extent of which varies depending on the type of joint: fixed, hinged or
-ise. Actual details may exhibit properties of one or more types at different stages of construction. Design calculations are getereily based on the assumption that joints are either fully fixed or completely unrestrained against rotation andor displacement. In reality such things as friction, soil movement and foundation deformation result in an intermediate degree of fixity, the implications of which may need to be assessed. Because the effects of edge restraint are of fundamental importance to tank design, detailed information can usually be found in almost any publication on tank design. BS 5337 is a suitable reference on these matters.

> SECTION 2 COMMENTARY C2.1 Denign method Ultimate strength design methods are considered to be of doubtful relevance to design of concrete storage tanks, as standard load factors specified in NzS 4203 were developed without considering the special types and intensities of loading to which concrete storage tanks are subjected. Servicability of the structure under the design loads is of paramount importance. A working stress approach is therefore required. Provided allowable stress levels are not exceeded under the service load combinations of

Dosign method Tank design shall be based on elastic analysis methods and shall take into account effects of all loads and conditions of edge restraint at wall junctions with floor and roof. Maximum Sections 5, 6 or 7 as appropriate.
> of the overflow pipe. ignored, that is, the overre the surcharge is likely to be large, tion. In most cases, the surcharge is small and can safiet level Overflow systems usually require a surcharge to initiate opexaLiquid load C2.2.5 propping of precast panels. Examples of construction loads are the stacking, lifting and Construction loads lifting and
-て・て
on foundations and soil investigations. should be determined by rational methods of soll mechanics based Earth pressures should take into account ical or asymmetrical) and Backfill loading should take into account the distribution and C2.2.3
separately. construction loads. This code deals with these aspect includes such things as earth pressure, temperature effects and Dead load definition differs from that given in NZS 4203 which C2.2.1
are temperature and shrinkage.
 depplication of forces . In a tank the force loading is There are two ODesign loads

C2.2.8.2
Roof
Temperature effects on the roof are in general small and of little significance unless the roof is cast monolithically with the wall.

In snow regions, appropriate consideration should be given to the effects of a reverse temperature gradient loutside colder than inside).

C2.2.8.
Special structures
The evaluation of the thermal response of concrete tanks subjected to unusual temperature conditions may require sophisticated heat flow analyses. A description of the procedures involved in such analyses is given in reference (2.1). In addition to final temperature gradients, transient thermal conditions may also be an important design consideration. For example, the temporary thermal gradients resulting from the rapid filling of a tank with a relatively hot liquid may be more severe than the eventual equilibrium condition.

C2.2.9
Earthquake
The earthquake analysis should include the inertid forces generated by the horizontal acceleration of the structure itself and the hydrodynamic forces generated by the horizontal accelera-
tion of the contained.liquid. The hydrodynamic pressure of the contained liquid can be considered to consist of two components: the "impulsive" (inertia) pressure caused by the portion of the liquid accelerating with the tank and the "convective" pressure caused by the portion of liquid oscillating in the tank.

2.2.8.2

Allowance shall be made for stresses and movements resulting .
from:
(a) a $\pm 20^{\circ} \mathrm{C}$ variation in the mean temperature.
(b) a linear temperature gradient of $5{ }^{\circ} \mathrm{C}$ per 100 wud of roof
thickness (outside hotter than inside $).$
2.2 .8 .3
Special structures
A structure containing heated or cooled fluids shall be subject
to a special study to establish the range of temperature con-
ditions appropriate for design.2.2 .9

Earthquake (E) 2.2.9.1

The structure shall be designed for the forces, shears and moments resulting from earthquake accelerations of liquid mass, dead mass and external mass responding with the structure.
ficients.
 latest revision of N2S 4203 would be completed before this
Note to Commentators - It was originally envigaged that the
Horizontal seiśmic coefficient
(a) General
tents respectively and are given in figure $\mathbf{C 2 . 2}$ for both circuiar
and rectangular tanks. ${ }^{W} \mathrm{C}$ and WI are the weights of the convective and impulsive conand $C_{\text {I }}$ respectively, see 2.2.9.3.
For horizontal convective and inertia earthquake coefficients C_{c} Horizontal earthquake force C2.2.9.2
 movement of the surrounding ground. Earthquake earth pressures
1971 San Fernando earthquake, the damage apparently caused by the balboa water treatment plant) suffered severe damage in the example, a large underground reinforced concrete tank (part of having been the apparent cause of a number of tank failures. For

2.3.9.3(b) and (d) (a) General. Unless a more rigorous analysis is undertaken, the
basic horizontal earthquake coefficients for the tank and
 2.2.9.3

pus

 total horizontal earthquake force, V_{H}, exerted on the tank, shall Unless calculated on the basis of a more rigorous analysis, the $z^{\prime} 6^{\circ} z^{\prime} z$

- पој7RIeteose punox6 yeed (0) $\frac{+\cdot 0_{L}}{0^{2} \varepsilon}=0_{3}$

Table c2.1
risk pactors and impited annual probabllity op

* Riak category 5 is upecific in thite code and not part of the

[^0]C_{d}, applicable for the structural type and material of the
support in accordance with Nzs 4203. . material code, C_{I} should be taken ai tha-basic coefficient,
 Where the tank is supported by a ductile supporting system
(ii) 2 viscous damping.
-(I = لh) esuodsax offerta (t) tions: recommended response spectrum 3 using the following assump-
 (9-20 •ba)

FOE $0.13<\mathrm{TI}_{\mathrm{I}}<0.60$ seconds
$C_{I}=A_{0}(1+13 T I)$
For $0.05 \leqslant T_{I}<0.13$ seconds sbuopsaendxo flexible tanks may be calculated from the following spectrum, the inertia coefficient for elastically responding cation effects. In lieu of the revised N2S 4203 response tanks which in some instances may lead to structural ampliRectangular tanks are generally more flexible than circular of its stiffness, has a very low period of oscillation. tion is realistic for a circular concrete tank which because zero period ordinate on the response spectrum. This assumpis equal to the peak ground acceleration, which is also the

Equation 2-4 states that the inertia earthquake coefficient
the tank and its support structure. location and appropriate values of damping and ductility of taking into account the period of vibration, geographical accordance with the basic coefficient given in NZS 4203
 $C_{I}=A_{0}$:Sq uəaṭ period of oscillation, T_{I} less than 0.05 seconds, $C I$ is Inertia coefficient C_{I}. For rigid tanks with fundamental
2.2.9.4

(a)						

 account the exact and complex vertical and horizontal variations in hydrodynamic pressures, the tank shall be designed for a horizontally uniform pressure distribution that varies linearly from

$\overline{(H Z-49) H A}$
where

- 7 d
:Kq pəuтwiozop 2q.

overturning moment 9.6.2.z5 $\frac{I_{\Lambda}+\partial_{\Lambda}}{141 I_{4}+\partial_{4} \partial_{\Lambda}}$

(L-zD
$\overline{14} \overline{1 L}+\partial_{4} \partial_{\Lambda}=4$
 gravity of the combined (convective plus inertia) horizontal
 circular tanks
figure C2.4: EARTHQUARE PRESSURE DISTRIBUTION IN

(9 IDWX LaD)
апте za
 - ロll =d xuez detnoxyo exoz tyue7 247 ; 30 adrys

 2.2.9.6

DZ 3106
(CPT KMCI 6)

(c) The total overturning moment acting on the foundation or support structure is given by:
$\mathrm{M}_{\mathrm{B}}=\mathrm{MBI}+\mathrm{MBC}$
(ii.) For $\mathrm{T}_{\mathrm{C}} / \mathrm{TI}<3$

(i) For $\mathrm{T}_{\mathrm{C} / \mathrm{TI} \geqslant 3}$
$M=M_{W}+M B_{B}$

		(t)
	$\boldsymbol{N}+M_{W}=W$	

$M=\sqrt{\left(M_{W I}+M B I\right)^{2}+(M W C+M B C)^{2}} \ldots \ldots \ldots$ (Eq. 2-14) 2.2.9.7
vertical earthquake acceleration
The vertical earthquake coefficient shall be as given in table
2.2.

D2 3106 (CPT KMCI 6) stresses caused by a vertical acceleration are identical in iistributin to those produced by the static liquid load while their magnitudes are some proportion thereof. For example, an upward earthquake acceleration of 0.25 g produces incremental stresses whose magnitude is 25 of the static liquid containment stresses.
The earthquake coefficients given in table 2.2 correspond to the peak horizontal accelerations for the zone and magnitude of earthquake considered, but reduced by a factor of 0.67 .

> C2.2.9.8 Combination of holizontal and vertical responses
ombination of accelera-
 reduced probability of their concurrence. E_{H} is the stress caused by the horizontal component of earthquake acceleration. By way of explanation, considering the example of an upward ground acceleration of 0.25 g , the incremental atre E_{V} is equal to 0.25 F where F is the stress caused by the static containment pres-"re.

$E=\sqrt{E_{a l}<2(0.25 F)^{2}}$

c2.2.9.9
Shear transfer
The horizontal earthquake force V_{H} generates shear forces between the wall and footing and the wall and roof. In rectangular tanks, the earthquake shear is transmitted directiy by reaction to vertical bending. In circular tanks, the earthquake shear is transmitted partly by membrane shear and the rest by reaction to vertical bending. For a tank with a height to diameter ratio of $1: 4$ approximately 20 of the earthquake shear force is transmitted by the radial base reaction to vertical bending. remaining 80 is resisted by uembrane shear transfer Q :
The roof to wall joint is subject to earthquake shear from the
horizontal acceleration of the roof. Where dowels are provided
to transfer this shear, the distribution will be the same as
shown in figure c2.6 with maximum shear given by:
Failure to provide a means for shear transfer around the circum-
ference will cause circumferential sliding of the wall. The
shear resistance is transferred to the principal diagonai,
inducing high membrane stresses at the wall junction, balanced by
high radial reactions as shown in figure c2.7.
The roof to wall joint is subject to earthquake shear from the restraint such as galvanized steel dowels. the earthquake shear, thereby requiring some form of mechanical wall base and footing will generally be insufficient to resist preformed slot in the ring beam footing. Friction between the precast tank construction the wall panels may be located in a cement through the foint to transmit this shear. However, for In general the wall/footing interface has sufficient reinfor-

$$
\frac{\mathrm{Q} \mu}{\mathrm{HA}_{\boldsymbol{A}} \cdot 0}=\frac{0 \mu}{0}
$$

The maximum shear occurs at 90 degrees to the earthquake direc-
tion and is given by:
The distribution is illustrated in figure C2.6.

	- 11

To transmit this shear Q, a shear flow q is required at the
wall/footing interface wheres

(9) Іจwh LdJ)

Table 3.3

The roof shall be designed for the shrinkage and swelling strains
given in table 2.3 .
－uotzexaptisuos repun votzoas ayz 7 E anten

IT・て・てゝ with the walls． restrained，for example，where the roof is cast monolithically Shrinkage（or swelling）of the roof will not produce significant
stresses unles the shrinkage（or swelling）dovament is Shrink C2．2．10．2
> strain by the coefficient of thermal expansion for concrete： equivalent is derived by dividing the shrinkage（or swelling） can also be used for calculating shrinkage stresses．The thermal that the method of analysis developed for temperature stresses increase．The similarity of thermal and shrinkage effects means decrease while swelling corresponds to an average temperature Shrinkage is directly analogous to an average temperature teristically similar to those caused by thermal effects．

> The stresses caused by volumetric changes in concrete are charac－ walls do not require specific design． gradients between the inside and outside faces of sections of the viceability of the tank．Consequently differential shrinkage results in crazing of the outer surface which，while relieving
the shrinxage stresses，has negligible effect on the ser－ with most of the differential occurring in the outer 15 ．This however that the gradient is low for much of the wall thickness to the distribution through the wall thickness．It appears

DZ 3106
(CPT KMCI 6) perimeter. Analysis have shown that this variation is generally low enough for stresses at any given section to depend only on. the local temperature or pressure distribution.

C2. 3
Load combinations
C2.3.2
Transient loads that should be omitted if beneficial, are earth pressure (EP), shrinkage (S_{h}), swelling (S_{w}) and temperature (T).

The prestress force may vary between $P_{\text {max }}$ and $P_{m i n}$, the maximum and minimum due to in-time losses, respectively. To ensure that the more adverse condition is incorporated in design, both $p_{\text {max }}$ and $P_{\text {min }}$ should be considered in the load comblnations.
(a) Group A loads. Group A load cases are permanent loads plus variable loads of long duration; or permanent loads plus frequently repetitive loads. Shrinkage is a long during load. Swelling can be elther short or long durations this is accounted for in the load factor.

Load case 2-16 equally applies for shrinkage and swelling; shrinkag? applies when the tank is emnty prior to filling, swelling applies when the tank is emptied for maintenance.
(b) Group B loads. Group B load cases are permanent loads plus infrequent combinations of transient loads.

Load case 2-21 applies equally to shrinkage and awelling; shrinkage - tank empty prior to filling, swelling - tank empty for maintenance.

The earthquake component in load case $\mathbf{2 - 2 5}$ refers to the pressure exerted on the roof by sloshing. of the contained liquid.
2.3

Load combinations

2.3.1

Structures and members shall be designed in accordance with the allowable stresses to resist the loading combinations specified in 2.3.2 as applicable.
2.3 .2 The loads described in 2.2 shall be combined in groupa as defined below. In any group, if a worse effect is obtained by omitting one or more of the transient items, this case shall also be considered.

(a) Group A loads

$$
\text { wall } A=D+E P+P+\left(S_{h} \text { or } 0.5 S_{w}\right) \ldots \ldots \ldots . .(E q \cdot 2-16)
$$

........... (Eq. 2-18) 2-191 $\underset{\sim}{N}$
\vdots
$~$ (Eq. 2-22)
管
m
REFERENCES
(2.1) Priestley, M.J.N., "Ambient Thermal Stresses in Circular
Prestressed Concrete Tanks", ACI Journal, Vol. 73, No. 10,
Oct. 1976, pp $553-560$.

[^1]DE 3106
(CPT RMCI
6)

SECTION 3
xyyinawwo
SECTION 3
COMMENTARY
C3.1
General
Guidance is given in this section on the materials to be used in
construction of concrete structures for the storage of liquids,
and on their properties to be used for design purposes.
and on their properties to be used for design purposes.
C3. 2
Concrete
C3.2.2
The comparatively high strengths and low water/cement ratios specified for concrete are to ensure high quality dense concrete with low shrinkage, to minimise cracking and permeability.
c3.2.4.
Minimum cement contents are specified to ensure dense durable concrete with low permeability.' Maximum cement contents are specified in order to minimise shrinkage, and shrinkage cracking in thin sections, and heat-of-hydration cracking in thick sections.
 following equations, which are duplicated from N2S 3101 This will result in increased values of E_{C} vhen using the

 voids to discrete spherical voids, thereby decreasing pershrinkage. It also changes the nature of the voids between the
particles in the concrete matrix from interconnected tubular C3.2.5 the approach taken by bs 5337.宿e inside surface will be continuously wet. This conforms with
 oi adopted for very high strength concrete ($50-60 \mathrm{MPa}$). Concrete opproaching the upper limit for prestressed concrete should only有 20 mm maximum aggregate size. Note that cement contents

provisions of NzS 3101, unless otherwise established by testing. Modulus of Elasticity.
 subject to continuous or frequent water contact, or condensation.
 $s \cdot z \cdot \varepsilon$
 :
maximura cement content, reinforced concrete
prestressed concrete :
minimum cement content, reinforced or

(9 Iowx Lat
19 IOWA
$90 \tau \varepsilon$ za
For normal weight concrete the value

> may be used.

> C3.2.7 Thermal stresses in tanks are also proportional to the concrete coefficient of thermal expansion α_{c} which cen vary between $5 \times 10-6 /{ }^{\circ} \mathrm{C}$ and $15 \times 10 \sim 6 /^{\circ} \mathrm{C}$ depending primarily on aggregate type, with Andesites and Limestones giving lowest values and Quartzites typically giving highest values. Some typical values are listed in table c3.1. Limited data on New zealand concretes is availabie in Referance (3.1).
Coefficient of Thermal Expansion

$\mathbf{E}_{\mathbf{c}}$ le avallabie In Referance (3.1).

[^2]| Aggregate | Coefficient of Thermal Expansion $\times 10-6 /{ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| | |
| Andesite | 6.5 |
| Basalt | 9.5 |
| Dolerite | 8.5 |
| Poamed slag | 9 |
| Granite | 9 |
| Greywacke | 11 |
| Limestone | 6 |
| Pumice | 7 |
| Quartzite | 13 |
| Sandstone | 10 |

3.2 .7

Coefficient of thermal expansion. The design value of the coefficient of thermal expansion shall be determined with due regard for the constituent materials to be used for the construction.
increased by $1 \times 10-6$ for cement mortar as a consequence.
 for x_{c} will tend to be higher than for equivalent concretes. It aggregate ratios required for cement mortar structures, values

 tatives testing wherever possible. Where characteristics of
constituents are not known at the time of testing, E_{c} and cement mortars should be assessed on the behaviour of represen-
tatives testing wherever possible. Where characteristics of Cement mortar
Modulus of el
C3. 3 $\infty_{c}=11 \times 10-6$ should be used. construction of the tank, a reasonably conservative value of

 The panels shall be fabricated, cured and cored as described in uf paqfasop se paros pu parno pozeofxqey eq trays sfoud aun

 $\varepsilon \cdot \tau \cdot \varepsilon \cdot \varepsilon$
cally batched, or weigh-batched to equivalent proportions.

 3.3.1.2 the limits of 2.50 and 3.30 . sand, and in addition shall have a fineness modulus lying between otherwise approved comply with the requirements of NZS 3121 for The aggregate for penumatically placed mortar shall, unless
 $\tau \cdot \varepsilon \cdot \varepsilon$ 187 7ow 7uəur刀
$\varepsilon \cdot \varepsilon$
3.3.1.4
Representative work panels of such number and at such times as the Engineer may specify shall be fabricated by gunning on to horizontal rigid plywood forms. These panels shall be approximately 300 mm square and 125 mm thick. Immediately after manufacture the panels shall be covered with impermeable plastics sheeting to prevent water loss, and shall be protected from direct sunlight. After not less than 16 hours they shall then for forwarded to the laboratory in a container which prevents

 such that free water is maintained on their surfaces at all

 each panel, and each set of three cores shall constitute a test sample. The cores shall remain in moist storage at $21 \pm 2{ }^{\circ} \mathrm{C}$ until tested at 28 days after forming the panel.

3.3.1.5

Modulus of elasticity. The design value of the modulus of elasticity of pneumatically placed mortar shall be determined in
 - бuヶ7 3.3.1.6
Coefficient of thermal expansion. The design value of coef-
ficient of thermal expansion shall be determilined with due regard
for the constituent materials to be used for the construction.
3.3.2
Hand-placed and mechanically-placed mortars.

[^3]-87ejadoxdde

Nobi-prastressed reinforcement 3.4 t

 elasticity of hand-placed or mechanically placed mortar shall be
 $\stackrel{\rightharpoonup}{*} \cdot \varepsilon \cdot \varepsilon$ 3109. $f^{\prime} c=25 \mathrm{MPa}$. Test results shall meet the requirements of NzS tested in accordance with N2S 3112 shall be not less than nominal $100 \mathrm{~mm} \times 50 \mathrm{~mm}$ diameter cylinders moulded, cured and

weight-batched to equivalent proportions. sand (3 \& to 5 moisture content) volumetrically batched, or

[^4]3.4 .2
Galvanized or zinc coated netting and twisted or loosely linked steel wire shall comply with BS 1485 or BS 4102, as appropriate.
Modulus of elasticity of hot-rolled reinforcement shall be taken as 200 GPa , unless otherwise established by testing.
3.5
Prestressed reinforcement
Prestressed reinforcement shall comply with the requirements for prestressing steel of NZS 3109.
Modulus of elasticity of prestressed reinforcement shall be established by tensile testing.

C3. 5
prestressed reinforcement Modulus of elasticity of prestressed reinforcement E_{s} is generally lower than the value of 200 GPa commonly used for normal strength reinforcement, and may be as low as 150 GPa . Values of E_{g} shouid be based on manufacturers' test results, or on results from independent testing.

REPERENCES
(3.1)

Boult, B.F, "Thérmal Properties of Concrete", Report GLRI5, New zealand Concrete Research Associdati,n, April 1979.
 Construction jointe the requirements of NZS 3109. 4.2.1
The placing of concrete for water retaining structures shall be
carried out with particular care but generally in accordance with

 prestressed concrete liquid retaining structures covered by this This section applies to the construction of all reinforced and 4.1 .1

Texauar T•'
 - NOILJTS

 A construction joint is a joinc in the concrete intiuluced for s7ựo! vofzonizsuos C4. 2.2 tion and durability. retaining structures and the need to provide watertight construc-
 The requirements set out in this section are
additional to the requirements of NuS $3109: 1980$ Specification for
concrete Construction. The additional requirements are related C4. 1 commentary SECTION 4

Construction joints should be located in positions selected by the design engineer and shown on the drawings. Typical applications for construction foints are in floor joints, and between successive lifts in a reservoir wall. Generaily all joints should be either vertical or horizontal.

Waterstops are not usually required at construction joints but may be included at the discretion of the design engineer. Before a waterstop can be effective some relative movement (debonding) must take place first and strictly speaking such foints are movement joints.

A special case of construction joints is the infill between precast wall elements of circular prestressed reservoirs. It is not good practice to use dry pack mortar in the joint as uneven compaction can cause uneven bearing stresses on the joint faces. It is now common practice to make such foints with an insitu concrete infill placed in one lift using a super plasticiser additive to aid placing. The dimensions of the infill should be sufficient for adequate placing of the concrete. The joint between the precast and insitu concrete should be planar and square to the pane? foce. Shear keys, grooves or other atress raisera should be avoided as they can lead to uneven stresses on the joint faces. Surl. fetails have been known to cause spalling to the precast element when prestress was applied.

Sometimes a amall rectangular groove is formed on the waterface of the folnt line and a sealant applied.

C4.2.3
A movement joint is a specially formed foint intended to accommodate relative movement between adjoining parts of a structure, special provision being made for maintaining the watertightness of the joint. Movement joints may be of the following types:

depends on their correct location, which may be characterized as
 plane of the joint.
provision is made to facilitate relative movement in the Sliding joint. This is a movement joint which has complete
disconcinuity in both reinforcment and concrete. Special joint filler are essential at expansion joints.

 complete discontinuity in both reforcement and concrete and Expansion joint. This is a movement joint which has
A water stop and/or sealing compound should be provided at
contraction joints. tinued through the joint. the concrete is interrupted while the reinforcement is con-
 A distinction should be made between a complete contraction
joint, in which both the concrete and reinforcement are
to permit contraction of the concrete.
concrete on both sides of the joint. The joint is intenaded deliberate discontinuity but no initial gap between the Contraction joint. This is a movement joint which has a

corrosion and early fallure of the tank. effect. Such voids can collect and transmit water leading to

The protection of the prestressing wires is crucial to the sacig-

war of the die. Such a method will not consistently meet this prestress due to variations in wire diameter as supplied and to drawing the tendon through a die are subject to variable Tanks constructed with wound tendons which are stressed by sxuez punom

C4.3.2

C4.3.1
Unbonded
than usual chlorine content for sterilisation hastens the attack.
 are attacked by chlorine and are not suitable for use in reser mRecent experience has shown that polysulphide rubber compounds

Appendix D of BS 5337 discusses the problem and solution. pparticular conditions. See reference (4.1).
fand care should be taken in selecting appropriate materials for

 and curing of a shotcrete cover of not less than 25 mm . Protection of the tendons shall include the proper application treated as an additional load case in the design. a possible " ${ }^{\text {ratiation }}$ of inftial prestress force of ± 20 is
 nal force required. measuring the applied tendion force to within ± 7.5 of the nomishall be constructed using equipment capable of stressing and
 4.3 .2
Wound
Unbonded tendons shall not be used in water retaining structures. Unbonded tendons T・を・タ

- Suṭznoxs pue bufssex7s 'bufssexzerd $\varepsilon \cdot b$
9018 za
(9) Iowx La
SECTION 5
DESIGN OF REINFORCED CONCRETE ELEMENTS
5.1
General
5.1 .1
This Section applies to the design of all unlined reinforced
concrete elements of liquid retaining structures covered by this
Standard that are in close proximity to the contained liquid,
such as reservoir walls, floors and roofs.
5.1.2
The design of reinforced concrete elements of liquid retaining
structures shall comply with the requirements of NzS 3101
Appendix B except as modified by the requirements of this
Section.
5.1 .3
For structures containing drinking water, roofs shall be
waterproof and shall be graded so that they do not pond water.

5.

Stiffness of cracked section
 mal and shrinkage) in the walls of circular reinforced concrete reservoirs may be calculated on the basis of an uncracked section and reduced by a factor F_{t} representing the local reduction in stiffness resulting from cracking in each direction.
A more rigorous approach to that given in 5.2.1 including an ana-

C5.1.3

BS 5337 has severe requirements for water proofing of roofs but in New zealand the atmosphere is cleaner and the worst potential contamlnants are probably bici droppings. Reasonable =-2tection should be provided by any reinforced concrete roof designed in accordance with this Code.
C5. 2
Stiffness of cracked section
Although curvatures caused by strain induced loads (temperature and shrinkage) are insignificant as a proportion of the ultimate deformation, they may be large compared to elastic loadings at design load level. Hence, although temperature or shrinkage will not significantly effect ultimate capacity of the tank, they may severely bear on the servicability of the structure.

Is unlikely to result in an adverse service condition.
The $I_{c r /} / I_{g}$ ratio depends on wall thickness and reinfor
compressive stresses are exceeded in the concrete, this -uad case increases section stiffness with a corresponding increase in
thermal/shrinkage stresses. However, unless allowable

 conservative side. Specifically, axial tension would further

 reduction factor is given by the ratio of the cracked moment of

 tion reaches a rigidity capable of resisting the stress without

 increasing stresses until the cracking strength of the section is
reached. Further increase in stress is accompanied by a decrease Increasing temperature or shrinkage subject the concrete to
evidence for alabs indicates that the stiffening effect decreases
with increasing reinforcement content p, and with increasing
moment level (after cracking). Approximate maximum figures are
100 increase at $p=0.005$ and 30 increase at $p=0.02$.
secause of its significance tension stiffening has been inciuded in the derivation of the F_{t} values.

Fig.C5.1 REDUCTION OF STIFFNESS OF DOUBLY REINFORCED

hard drawn oteel mesh.

Minimum reintorcemant:
5.5

$\rightarrow \cdot \mathrm{s}$
tension for the purposes of Appendix B of NZS 3101. flexural memebers, the concrete may be assumed to take diagonal In stress calculations the tensile strength of concrete shall be
ignored, except that, in respect of provisions of shear in 5.3 .2
(9) 10wx ปdכ)
5.5.2 or those parta minimum ratio of reinforcement area to gross concrete area shall be based on rational analysis of the degree of restraint to shrinkage, with reinforcement stresses not exceeding those given in table 5.2 , but shall not be less than that required by 5.5.1.

Table 5.2

haximum permissible stresses in reinforcing steel
FOR STRENGTH CALCULATION --.-.

C5.5.2
The most common situtation where partial restraint of shrinkage will occur is for a floor slab with an integral slab/foundation beam construction. Consider the case of a circular reservoir, where, as is generally the case, the foundation ring beam supporting the wall is cast first, with the slab cast later. Radial shrinkage of the slab is restrained by hoop compression in the foundation beam. The degree of restraint to slab shrinkage will depend on the relative stiffness of the slab in radial tension, and the ring beam in hoop compression.

A simple compatibility analysis will show that the shrinkage stress induced will be given by

$f_{s}=\frac{1}{1+E_{R s}} \cdot \varepsilon_{s h}$

$1+R_{R}$

$\mathrm{K}_{\mathrm{R}}=\underline{\text { EstgR }}$

is the ratio of slab to beam radial stiffness $i_{s}=$ slab thickness, $R=$ radius to the slab/beam interface, $E_{c b} m$ beam modulus of elasticity and $A_{b}=$ cross-sectional area of beam).

The shrinkage strain sh in equation C5-1 may be taken from 2.3 for a slab of effective thickness $2 \mathrm{t}_{\mathrm{g}}$, since moisture loss will occur only from the top surface.

Stresses resulting from frictional restraint of the slab sliding on its sub-base must be added to the stress computed in Eqn. C5-2. Note that since shrinkage occurs with the tank empty, the weight causing frictional restraint is the weight of the slab alone.

 formation of wide cracks.

 sections such as walls and slabs for example, are particularly
 creep and shrinkage. The contraction which results from

 shrinkage.

何ictional restraint to sliding.
movement joint, the only restraint to shrinkage will be from
For a design separating the floor slab from the ring beam by a

C5.6.1
Reinforcement, especially at anchorage lengths and lapped splices, should be detailed in a manner that will minimise congestion which might inhibit the achievement of dense, void-free concrete. For this reason hooks and contact splices should not usually be used. Spliced bars which are separated by less than the greater of $11 / 2$ times the bar diameter or 40 mm should be considered to be contact splices requiring compliance with Section 5 of NZS 3101. No more than one third of the bars at any cross section should be spliced within a length of 40 bar diameters unless special precautions are taken in accordance with Section 5 of NZS 3101.

C5.7.1
 be increased for aggressive liquids or abrasive conditions.
out in 5.5. C5.8.2
Slabs should not be considered as unrestrained unless they are on
a low friction surface and are not connected into perimeter beams
or other footings. Restrained slabs should be provided with
additional reinforcement to carry the retraining forces as set thickness. site concrete shall not be considered as paxic of the structural C5.8.1
membrane might provide such a collection system at a low cost. give early warning of leakage. Drainage layers on a flexible providing a secondary collection system under floor slabs to sequences warrant, then consideration should be given to ditions of the site should be considered. If risks and consevere damage. When designing floor systems the special conLeaks in floor slabs can be undetected for a considerable period
and in certain ground conditions even small flows can lead to

[^5]specifically designed for movement. in 5.5 and such reinforcement shall pass through all foints not Minimura reinforcement for unrestrained slabs shall be as set out z•8•s

I. $\mathbf{B}^{\mathbf{8}} \mathbf{s}$

steel in the walls or roof.
component of the dome reaction without a contribution from hoop

DZ 3106
(CPT KMEI 6)
SECTION 6
DESIGN OF PRESTRESSED CONCRETE ELEMENTS
6.1
General
Design of prestressed concrete elements of liquid-retaining
atructures shall comply with the requiremente of NzS 3101,
Section 13 except as modified by the requirementa of this
Section.
6.2
Materials
Materiale for prestressed concrete elementi of liquid-retaining structures shall comply with the requirements of Section 3.
6.2 .2
Hand-placed or mechanically-placed mortar shall not be used for prestressed elements of liquid-retaining structures.

[^6] tion of liquid-retaining structures.
table 6．1，except as allowed by 6．6．

 Concrete and pnewmatically placed mortar でE•9

$\begin{aligned} & 0 . J / s * 0 \\ & 0 \\ & 0 . J / E \cdot 0 \end{aligned}$	$\stackrel{400}{20-}$	$i J / \varsigma \cdot 0$ ＊EdH L＊O－	$\begin{aligned} & \text { is } s s \cdot 0 \\ & \text { is } 4 \cdot 0 \end{aligned}$	suotzrujquos a dnoss suoszeutqwos y dnoas

леачs cosy Supatnsen scan3s hojsuat trajoujad	s3ujof นотวอกมวรน0ง scodje Uoysual	อ7а」อu0s －риวรтоиош uร uojsua，	uojesenduros	suoribulquos prot

[^7]with the requirements of NZS 3101 ，Section 13. Temporary and working stresses in prestressing steel shall comply

sessexza otqumotiv

$v=\frac{1.5 v}{t}\left[1-\left(\frac{2 y}{t}\right)^{2}\right]$

：©R passandx
given by：
to give a linear distribution of direct stress，（fig．C6．Ib）
 slope of the vertical bending moment diagram，and will be a maxi－
 subjected to axial compression force $P_{\text {，moment }} M_{v}$ ，and shear V ，

Figure C6．1 111 untrates the procedure for a typical tank wall wall thickness． combined effects of vertical prestress，and shear through the by calculating the principal tension stress existing under the ciated with bending in the vertical direction should be checked the concrete will be similar，except for very thick walls．Shear
stresses are unlikely to govern design，However，shear asso－ the concrete will be similar，except for very thick walls．Shear induced load combinations or seismic loading．No distinction is loads，but allows siginficant tension stresses under strain Table 6.1 requires residual compression under long duration nllowable stresses音

dependent creep redistribution of prestress. 6.4.1
Liquid retaining structures shall be designed for the full
effects of prestressing, including secondary stresses, and time-
sassexzs вsexfsexd Kivpuodas

- 9

(A) non-prestressed reinforcement is provided across the
Cracking at construction jointe under Group B load combinations
is permitted providedi 6.3.3 Group B load configurations

The equivalent radially inwards pressure is thus
The application of circuiar prestress forces to walls with pinned or moment resinting connections to the base will result in no circumferential stresses being induced at the level of the wall base because the rigidity of the base prevents development of radial displacement, and hence circumferential strain.
Consequently it is common to apply some or all of the prestress with the wall initially free to slide radially. This enables compression stresses to be developed at the base of the wall.
If the base is pinned or flxed after the application of
prestress, radially inwards creep displacements are restrained at
the base, but may still develop at levels higher up the wall, resulting in an in-time radial displacement of the form shown in fig. C6.3. From the curvature of the wall it is apparent that vertical bending moments have been developed, whereas the initiai linear deflection indicates no vertical bendint.

> The effect of the structaral modification provided $h y$ pinning or fixing the base after prestress application, is to produce circumferential and vertical stresses that are the same as those that would result from a fraction of the prestress, p_{i}, being applied with the base free to slide, and the remainder,
> pf ($=1$ - pl) of the prestress being applied with the base pinned (or fixed). A rate-of-creep method of analysis results in the following expression for p_{i}.

 This clause permits the use of partial prestressing as an alterPartial prestressing

 applying circumferential prestress, still remaining at time of where C_{t} is the part of the creep function relative to time of
taking full account of creep and shrinkage effects, satisfy the
limits of table 5.2. provided in the tension zone, and stresses in this reinforcinent,

 Partial prestressing lysis to require crack control.
6.6 .

(c) In other regions, such as construction foints, shown by ana-

(a) end anchorage zones, as shear and burating reinforcement

3 リร รานขแ
 Non-tensioned reinforcement ahall be provided in prestressed ele-Non-tensioned reinforcement in -

prestressed reinforcement in a partially prestressed section is subject to an initial compression stress which gradually increases due to creep of the concrete under the prestresa force and also due to shrinkage. On the application of a load sufficient to reduce concrete stresses at the level of the reinforcement to zero the strain in the reinforcement is reduced by an amount equal to the initial elastic strain resulting from
prestress. Thus though the surrounding concrete is at zero stress, the reinforcement is still subject to compression stress, which may be of considerable magnitude. As the load is increased to a level where cracking results, and concrete tenaion force is transferred to the reinforcement, the final reinforcement tension stress is effectively dictated by requirements of equilibrium of forces. The result is that the stress change in the reinforcement associated with cracking (from a compression stress at
zero concrete tension, to a tension stress after crack initiation) is larger than if the effects of creep on the initial stress distribution has been ignored. Consequently the crack width will be proportionally larger. It is this change in reinforcement stress which must not exceed the allowable stress
levels given in table 5.1. The residual compression stress in
the reinforcement at ziro concrete stress may be calculated from
the expression

where. f_{c} is the average compression stress in the concrete immediateiy adjacent to the reinforcement, prior to decompression, and c_{t} is the appropriate creep factor. The influence of shrinkage is not included in Eqn. C7-8, Bince the normal operating conditon for the tank will be with the tank full, and thus swelling will compensate for previous shrinkage.
 tension atiffening would be considerable. In this absence of tially prestressed walls was not available, but it is felt that information on the tension stiffening characteristics of par-

 non-prestressed elements, and a rational analysis, taking tension

9 IOWA 90 TE 20

$$
\begin{aligned}
& \begin{array}{l}
\text { SECTION } 7 \\
\text { CEMENT MORTAR ELEMENTS } \\
\text { T.1 } \\
\text { General } \\
7.1 .1 \\
\text { This Section applies to the elements of circular non-prestresged } \\
\text { tanks which are constructed in multiple layers of hand placed, } \\
\text { mechanically placed or pneunatically placed mortar. } \\
7.1 .2 \\
\text { Except where otherwise specified in this Section the relevant } \\
\text { requirements of Sections } 1,2 \text { and } 3 \text { should apply to cement mortar } \\
\text { elements. }
\end{array} \\
& \text { Construction } \\
& 7.2 .1 \\
& \text { Cement mortar elements of tanks shall be constructed by spe- } \\
& \text { Continuous supervision shall be provided to the approval of the } \\
& \text { Engineer. }
\end{aligned}
$$

DZ 3106
$(\mathrm{CPT} \mathrm{RMCI}$
RM

> SECTION 7 COMMENTARY C7.1 General Tanks constructed of reinforced cement mortar have been in service in New zealand and other countries for many years. They differ from convential reinforced concrete tanks in detailing and method of construction.

Typically they are reinforced with many layers of very amall. diameter reinforcing separated by separately applied layers of high strength mortar. The high specific surface of the reinforcement produces a reduced characteristic bond length resulting in diminished crack widths. Added to this is the corrosion inhibiting properties of the dense fine grained mortar with its cement rich mix providing an alkaline environment.

It therefore follows that because of the inherent properties of cement mortar some of the code provisions for reinforced concrete elements can be relaxid for cement mortar elements.
$\stackrel{\square}{\text { - }}$
Construction
The Code allows high stresses and smaller covers for cement mortar and consequently tolerances in construction should be closer. The manufacture and application of mortar is a highly skilled trade and it is important that high standards of construction are maintained. It is for these reasons that the code requires that construction is only carried out by those able to demonstrate the necessary skills.
Adequate protection by shading and shielding shall be given
against fluctuations in temperature. 7.3 .5
As soon as pneumatic mortar has hardened just sufficientiy to
avoid damage, it should be thoroughly wetted and thereafter kept
continuousiy wet for at least seven days, or alternatively pro-
tected by an approved curing compound.
7.3.6

 $\varepsilon \cdot \varepsilon \cdot L$

 - • モ'E'し
 T.E.L E.

$\varepsilon \cdot$. .
7.4
Hand-placed mortar
7.4
Hand-placed mortar
7.4 .1
Every layer of mortar shall be brushed or otherwise treated after
initial set to provide adequate bond for the succeeding layer.
7.4 .2
The thickness of any layer of mortar shall be such that no
alumping occurs.
$7: 5$
Mechanically-placed mortar
The provisions of 7.4 shall apply also to mechanically-placed mortar. 7.6.1
Where any wall is constructed entirely with pneumatically-place
mortar, the minimum thickness shall be:
(a) For factory made portable tanks up to $25 \mathrm{m3}$: Three mortar
coats aggregating not less than 33 mm 7.6.1
Where any wall is constructed entirely with pneumatically-placed
mortar, the minimum thickness shall be:
(a) For factory made portable tanks up to $25 \mathrm{m3}$: Three mortar
coats aggregating not less than 33 mm 7.6.1
Where any wall is constructed entirely with pneumatically-placed
mortar, the minimum thickness shall be:
(a) For factory made portable tanks up to $25 \mathrm{m3}$: Three mortar
coats aggregating not less than 33 um 7.6.1
Where any wall is constructed entirely with pneumatically-place
mortar, the minimum thickness shall be:
(a) For factory made portable tanks up to $25 \mathrm{m3}$: Three mortar
coats aggregating not less than 33 mm 7.6.1
Where any wall is constructed entirely with pneumatically-place
mortar, the minimum thickness shall be:
(a) For factory made portable tanks up to $25 \mathrm{m3}$: Three mortar
coats aggregating not less than 33 mm
7.6 Minimum wall thickness for watertightness 7.6.1
Where any wall is constructed entirely with pneumatically-place
mortar, the minimum thickness shall be:
(a) For factory made portable tanks up to $25 \mathrm{m3}$: Three mortar
coats aggregating not less than 33 mm

[^8]7.5 .1

[^9]
deformed bars will provide better control of cracking. retaining structures where the improved bond characteristics of

 C7.7.4 fabric. and the allowable working stress for them is the same as for for increaning the percentage of reinforcement in one direction Small diameter wires and bars (less than 6 mm) are also useful working stress for them is given as 0.55 of f_{Y}. chain netting are considered to be satisfactory and the allowable Other small diameter fabric such as woven or welded mesh and C7.7.3 in the Code to 0.1 of f_{y}. material and therefore its working strength has been downgraded Convential wire netting is not regarded as a good engineering C7. 7.2 density of closely spaced small diameter reinforcement. An essential characteristic of cement mortar elements is a high

T: 20
7.8
$M i n i$
Hinimum cover to reinforcement
7.8 .1
The minimum cover to reinforcement shall be as specified in 5.7 ,
except that where mortar is hand-placed by trowel, or pneumati-
cally-placed mortar is used, cover may be reduced to a minimum of
15 ma or 25 nm respectively.
7.8 .2
Where the reinforcing layer nearest the face is galvanized the
cover may be further reduced to 10 mmare the member is hand
placed by trowel and to 15 mm when the member is pneumatically placed.
For factory made portable tanks up to 25 m 3 the minimum cover on the inside face shall be not less than: -
(a) 10 man where the internal coat is applien last, or
(b) 12 mm where the internal coat is appiled first.
7.8 .4
Where steel-trowelled hand-placed mortar is used the outer surface shall be applied with a rinimum of two layers.
For structures containing or surrounded by aewage, sewage sludge,
or sea water the minimum cover to any reinforcement shall be
7.8 .5
For st 25 mum using at least two layers of hand-placed mortar, or 40 man using pneumatically-placed mortar.

Dz 3106 (CPT KMCI 6)

[^10]
 that:

 For factory made portable tanks up to 40 m 3 with galanized rein-
forcement the minimum thickness of a shell roof shall be 33 man, not less than the thickness of the wall at that point.
except that the thickness at the springing of the shell shall be graater of 40 mm and the figure given by Egn. 5-1 subject to the
provisions of ininimum steel coverages, as specified in 7.8 , The minimum thickness of a cement mortar sheel roof shall be the
greater of 40 mm and the figure given by Eqn. 5-1 subject to the 7.9 .2

 [.6.L
 6.2

[^0]: tor R. This risk factor is as defined in NzS 4203 with values and categories appropriate for tank design given in table $\mathbf{C 2} .1$ along with the implied probability of exceedance for each category.

[^1]: (9) 10wy 山สอ)

[^2]: Table C3.1
 TYPICAL COEPFICIENTS OF THERPAL EXPANSION POR WATER-CURED
 CONCRETE MADE PROM DIfFERENT AGGREGATE tYPES
 COMCRE MADE .

[^3]: 3.3.2.1

 The aggregates for hand-placed and mechanically placed mortars shall comply with the requirements for sands for mortars and external rendering as specified in N2S 3103.

[^4]: (9 Iows LaD)

[^5]: C5. 8
 Floor

[^6]: Unbonded prestressing tendons shall not be used in the construc-

[^7]: table 6．1－permissible concrete stresses

[^8]: 7.4 .3

 Hand-placed mortar shall be cured as described in 7.3.4, 7.3.5 and 7.3.6.

[^9]: (b) For other tanks not exceeding 40 m 3 : Four mortar coats aggregating not less than 44 mm gregating not leas than agregating not less than 44

[^10]: c7. 8
 The code requirements for covar to reinforcement in cement mortar elements are reduced from those required for convential reinforced concrete because of the better corrosion resistance of cement mortar as described in c7.1.
 Minimum cover to reinforcement

