ENG.HAR.0002.1

New Technologies in Reinforced Concrete

A Practioner's viewpoint John Hare, Director, Holmes Consulting Group

Why?

- Without awareness of what has gone wrong, we cannot do better
 - Is our life safety standard appropriate?
 - Was it met adequately?
 - Were our damage expectations exceeded?
 - Were building owners/users adequately prepared?
- Question:

"Acceptable imperfection or absolute perfection?"

ENG.HAR.0002.3

Is this good enough?

Existing RC System shortcomings

- Frame elongation
- Floor diaphragm failure
- Wall behaviour
- 'Labcrete' vs 'realcrete'
- Low cycle fatigue
- Detail failure, e.g.
 - grouted ducts
 - Panel connections

If Better Performance is Required

- Will new technologies perform better?
 - Low Damage Design (LDD)
 - How is this defined?
- What are the drivers?
 - Regulated (Codes, Standards)
 - Or by informed owners, engineers (guidelines)
 - Or by insurance
- How is it determined?
 - Performance Objectives
 - Limit states
 - What defines 'low damage'

Defining Performance Objectives

Performance Objectives for LDD

- Damage mitigation effectiveness
- Reparability
- Self-centring ability
- Non-structural Damage
- Durability
- Affordability

Damage mitigation effectiveness

- Ensure we are not trading one set of issues for another
 - Frame elongation leading to diaphragm issues in articulating systems
 - Low cycle fatigue issues in key members
- Define performance parameters that could be considered 'low damage'
 - At performance points

Repairability

- Ductility is damage in the form of hysteretic damping
- Design systems that can be repaired
 - Either not encapsulated
 - Or allow easy retrofit of external replacement systems
- Consider cost of replacement
- Consider implications of replacement

Self-centering ability

• How critical is this?

- Maybe <0.5% after major earthquake?
- Active systems
 - PRESSS
 - Base Isolation
- Passive systems
 - Secondary structure

Non-structural damage

- Stiffer = less drift
 - Less damage to non-structural elements
 - Greater accelerations more contents damage
- More flexible = lower accelerations
 - Less damage to contents
 - Greater displacement more damage ot nonstructural elements
- Can only reduce this by adding more damping to reduce both drift and displacement

Durability

- Must not deteriorate over time
 - E.g. friction systems constant μ ? or fail-safe?
- Must consider maintenance requirements
 - E.g. tests/inspection regimes for dampers?

Affordability

- Difficult to justify if too expensive
 - B/C study unlikely to show positive retuen, given low probability of earthquake
- Must include downstream factors, e.g.
 - Loss of space for BI systems
 - Cost of maintenance
 - Increased design and compliance costs
- Insurance may tip balance
 - NZ insurance levels unique hence our current circumstances

Design Methodologies

• Whatever works!

- Concentrate on the 'what', not the 'how'.
- Must be able to defend designs as well as develop
 - Compliance costs important
- Must be applicable in a design office context

Designers' Needs

- Complete research
 - Not always fully considered
 - Risk to early adopters
- Industry guidelines → Standards → Building Code
- Efficient design methodologies

'New' Technologies

- Base Isolation
- PRESSS/PRESLAM
- Rocking walls with dissipators
- Slotted beams
- Viscous damping options
- Buckling restrained braces
- Rocking foundations

Old Technology

- Get it right.....
 - Regular
 - Well conceived
 - Well detailed
 - Well constructed
 - On good ground
- Contrast that to some already seen

End

ENG.HAR.0002.19