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SECTION B 

THE ANALYSIS A N D DESIGN OF AND THE E V A L U A T I O N 
OF DESIGN ACTIONS FOR REINFORCED CONCRETE DUCTILE SHEAR WALL STRUCTURES 

T. Paulay* and R.L. Williams** 

ABSTRACT: 

A comprehensive review of the state of the art in the design of 
earthquake resisting ductile structural walls is presented. The material 
has been compiled from the technical literature, the deliberations within 
the New Zealand National Society for Earthquake Engineering and research 
efforts at the University of Canterbury. The paper attempts a classific­
ation of structural types and elaborates on the hierarchy in energy dis­
sipation. After a review of available analysis procedures, including 
modelling assumptions, a detailed description of capacity design pro­
cedures for both cantilever and coupled shear wall structures is given. 
The primary purpose of capacity design is to evaluate the critical design 
actions which can be used in the proportioning and reinforcing of wall 
actions which can be used in the proportioning and reinforcing of wall 
sections. An approach to the estimation of structural deformation is 
suggested. To satisfy the ductility demands imposed by the largest 
expected earthquake, detailed design and detailing recommendations are 
given and the application of some of these is presented in an appendix. 

INTRODUCTION: 

The usefulness of structural walls in 
the planning of multistorey buildings has 
long been recognized. When walls are 
situated in advantageous positions in a 
building, they can become very efficient in 
lateral load resistance, while also fulfill­
ing other functional requirements. 

Because a large portion of the lateral 
load on a building, if not the whole amount, 
and the horizontal shear force resulting 
from it, are often assigned to such 
structural elements, they have been called 
shear walls. The name is unfortunate 
because shear should not be the critical 
parameter of behaviour. 

The basic criteria that the designer will 
aim to satisfy when using structural walls 
in earthquake resistant structures are as 
follows: 

(a) To provide adequate stiffness so that 
during moderate seismic disturbances 
complete protection against damage, 
particularly in non-structural com­
ponents , is assured. 

(b) To provide adequate strength to ensure 
that an elastic seismic response, 
generating forces of the order specified 
by building codes(D, does not result 
in more than superficial structural 
damage. Even though during such an 
event some non-structural damage is 
expected, it is unlikely that in 
buildings with well designed shear 
walls this will be serious. 

(c) To provide adequate structural ductility 
and capability to dissipate energy for 
the case when the largest disturbance 
to be expected in the region does occur. 
Extensive damage, perhaps beyond the 
possibility of repair, is accepted 
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under these extreme conditions, but 
collapse must be prevented. 

(d) The subsequent sections concentrate 
on those aspects of the design and 
response of structural walls that are 
relevant to this third design criterion. 
Consequently the inelastic response 
of structural walls, when subjected 
to simulated cyclic reversed loading, 
together with various parameters 
that must affect this response, will 
be examined in some detail for various 
types of structures. It will be 
assumed that in all cases adequate 
foundations can be provided so that 
rocking will not occur and that 
energy dissipation, when required, 
will take place in the structural 
wall above foundation level. A 
detailed discussion of concepts, 
relevant to the design of foundations 
for shear wall structures, is provided 
in Reference 5. Also it will be 
assumed that: 

(i) Inertia forces at each floor 
can be introduced to the 
structural wall by adequate 
connections, such as collector 
beams or diaphragms and from 
the floor system, and that 

(ii) The foundation for each wall 
does not significantly affect 
its stiffness relative to similar 
other walls in a building. 

TYPES OF DUCTILE STRUCTURAL WALLS: 

In this section the principles of the 
analyses and the design of earthquake 
resisting structural walls, in which 
significant amounts of energy can be 
dissipated by flexural yielding in the 
superstructure, are examined. The 
prerequisite in the design of such seismic 
walls is that flexural yielding in clearly 
defined plastic hinge zones must control 
the strength to be utilized during imposed 
inelastic seismic displacements. As a 
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corollary to this requirement, failure 
due to shear, inadequate anchorage or 
splicing of the reinforcement, instability 
of concrete components or compression bars 
and sliding along construction joints 
must be avoided. While large inelastic 
seismic displacements are sustained by 
the structure. Some of the failure modes 
mentioned are illustrated in figure 1. 

In the evaluation of the equivalent 
lateral static design load, to be used in 
establishing the minimum seismic strength 
of a structure, the New Zealand Design 
and Loading Code^ 1^ specifies structural 
type factors, S. These factors are 
intended to reflect the expected seismic 
performance of the structure. There 
are two aspects which are to be considered 
in the assessment of performance, one is 
the ability of the type of structure to 
dissipate energy in a number of inelastic 
displacement cycles, and the other is 
the degree of redundancy existing in the 
chosen structural system. A high degree 
of structural redundancy, involving a large 
number of localities where energy dissipation 
by flexural yielding can occur, is desirable. 

Accordingly it is recommended that 
earthquake resisting ductile structural 
walls be classified as follows: 

(a) Two or more cantilever walls with a 
height, h , to horizontal length, 
i^jf ratio of not less than two are 
assigned a structural type factor 
of S = 1 . 0 {see figure 2a). 

(b) For two or more cantilever walls, each 
with an aspect ratio h /I not less 
than two, which are coupled by a 
number of appropriately reinforced 
ductile coupling beams that are 
capable of dissipating a significant 
portion of the seismic energy, the 
value of S is 0.8. This is in 
recognition of the high degree of 
redundancy and the fact that damage 
is likely to be small in the gravity 
load carrying elements. 

The significance of the coupling 
beams in energy dissipation is 
conveniently expressed by the contribut­
ion of the coupling beams to the total 
overturning moment that is produced by 
the code specified lateral loading 
at the base of the coupled shear wall 
structure. This is illustrated in 
figure 17. A suitable parameter which 
expresses this is the moment ratio 

where T = induced axial load in one 
of the two coupled shear 
walls at the base of the 
structure due to the code 
specified lateral static 
loading 

I = distance between axes of the 
two walls 

M = overturning moment due to the 

load inducing T, about the base of 
the structure 

These quantities may be seen in fiaure 
17. 

Depending on the contribution of the 
beams to the resistance of overturning 
moment and hence to total energy dissipation, 
the structural type factor, S, is made 
dependent on the moment ratio. A, thus 

when 0.67 ^ A ^ 0.33 (B-2) 

then 0 . 8 < S = 0 . 8 + 0 . 6 * 
(0.67 - A) 4 1.0 (B-3) 

For intermediate values of A a linear 
interpolation of S may be made. The 
application of this is discussed in detail 
in section B.5.3.4. 

Typically for a wall with deep coupling 
beams, illustrated in figure 17b, the 
appropriate S factor is likely to be 0.8. 
When walls are interconnected by slabs only, 
(figure 17c) as is often the case in 
apartment buildings, the value of A from 
Eq. (B-l) will usually be much less than 
0.33 and hence S = 1.0. A comparison of 
the moment contribution of the IT component 
to the total overturning moment M is shown 
in figure 18. 

(c) Sinqle cantilever walls, with h^/5,^ ^ 2, 
are to be designed with S = 1.2, to 
compensate for the lack of redundancy. 
(See figure 2b). 

(d) Squat cantilever walls with an aspect 
ratio of h /I < 2, in which shear w w 
effects are likely to be dominant, 
are not expected to produce as efficient 
energy dissipation due to flexural 
ductility as more slender structural 
walls. Shear deformations, particularly 
shear sliding, may cause significant 
pinching in the hysteresis loops 
exhibited by squat shear walls(2) / 

and thereby loss of energy dissipation 
will occur. 
In order to reduce the displacement 
ductility demand on squat walls, the 
strength of the walls with respect to 
seismic loading should be increased. 
Hence for walls for which 1 ^h^/l^ 4 2, 
the structural type factor given above 
in (a), (b) and (c) should be multiplied 
by Z where 

l ^ Z = 2 . 2 - 0 . 6 h w / £ w < 1.6 (B-4) 

It is to be noted that the use of higher 
structural type factors, i.e. 
S = 1.6 x 1.0 = 1.6 or S = 1.6 x 1.2 = 1.92, 
is expected only to reduce but not to 
eliminate the ductility demand on squat 
shear walls. 

Squat walls will have a relatively low 
fundamental period (T < 0.6 sec). It 
is known that short period structures, 
designed to the requirements of the 
New Zealand loading c o d e ^ ) , are likely 
to be subjected to higher ductility 
demands than long period structures. 
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Fig. 1 - Possible Failure Modes in Cantilever Shear Walls 
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Fig. 2 - Types of Cantilever Shear Walls 
with Appropriate S Factors 

Fig. 3 - Load-Displacement Response to Cyclic Reversed 
Loading of a Ductile Shear Wall Structure (10) 
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Moreover, in a given earthquake, a 
short period squat shear wall is 
likely to be subjected to a greater 
number of excursions beyond yield 
than a long period structure. There­
fore the cumulative ductility, which 
has some relevance to damage, is still 
high. These observations indicate 
that squat shear walls, such as shown 
in figure 2c, designed with a 
modified structural type factor, S, 
must also be ductile and hence they 
must be detailed accordingly. 

Structural walls of different types 
are reviewed in Reference 3 and detailed 
procedures recommended for walls which 
cannot be made fully ductile are presented 
in Reference 4. The requirements for the 
design of foundations which can sustain 
inelastic superstructures when their 
maximum feasible seismic strength is being 
developed, are examined in Reference 5. 

HIERARCY IN ENERGY DISSIPATION: 

It is generally accepted that for most 
siguations energy dissipation by hysteretic 
damping is a viable means by which structural 
survival of large earthquake imposed 
displacements can be assured. This may 
involve very large excursions beyond yield. 
Such structures must therefore be ductile. 
To ensure the desired energy dissipation, 
the designer's primary aim will be to 
minimize the inevitable degradation in both 
stiffness and strength. 

Flexural Yielding of Ductile Walls 

An obvious source of hysteretic damping 
is the yielding of the principal flexural 
reinforcement. Yielding can be restricted 
to well defined plastic hinge zones, as 
shown in figure lb. Therefore such areas 
deserve special attention. Concrete, 
being a relatively brittle material that 
shows rapid strength degradation, in both 
compression and shear, when subjected to 
repeated inelastic strains and multi­
directional cracking, should not be 
considered in structural walls as a 
significant source of energy dissipation. 
To ensure the desired ductility, the major 
part of the internal forces in the potential 
plastic region of a shear wall should 
therefore be allocated to reinforcement. 
The desired response of a ductile shear 
wall structure manifests itself in well 
rounded load-displacement hysteresis loops, 
such as shown in figure 3. 

Control of Shear Distortions 

While shear resisting mechanisms in 
reinforced concrete, that rely on the 
traditional truss mechanism (figure lc) , 
can be made relatively ductile in shear 
during monotonic loading, they are generally 
unsuitable for inelastic cyclic shear 
loading. Shear resistance after inelastic 
shear displacements can be attained only 
when the subsequent imposed displacement 
is larger than the largest previously 
encountered displacement. Inelastic 
tensile strains in stirrup reinforcement 
can never be recovered and hence in such 

cases the width of diagonal cracks also 
increases with progressive cyclic loading. 
Curves 3 and 4 in figure 4 show typical 
load displacement responses for one quadrant 
of a displacement cycle, which have been 
affected by significant shear displacements. 
In comparison curves 1 and 2 show the ideal­
ized elastic-plastic and the optimal response 
of a reinforced concrete member. In order 
to minimize the 1 pinching' of hysteresis 
loops, i.e. the loss of energy dissipating 
capacity within restricted displacements, 
designers should endeavour to suppress 
inelastic shear distortions. In 
conventionally reinforced walls the 
detrimental effect of shear increases with 
the magnitude of the shear stress. For 
example figure 5 shows the hysteretic 
response of a cantilever shear wall in which, 
due to relatively large shear stresses, shear 

deformations have become increasingly 
significant with increased cycles of loading 
and the amplitude of the applied deflection 
at the top of the wall. It is also seen 
that in each cycle the stiffness of the 
wall decreased, even though the full capacity 
of the wall was attained. The envelope 
curve follows closely the load-displacement 
curve that is obtained during monotonic 
loading with the same displacement ductility. 
If several cycles with the same magnitude 
to top displacement are applied, for example 
to 4 in (10 cm) in each direction, (see 
figure 5 ) , the load attained would have 
gradually decreased in each cycle. Such 
a wall is likely to fulfill the design 
criteria but its performance is clearly 
inferior to that demonstrated in figure 4. 

The Desired Hierarchy in Strength 

From the features considered above it 
becomes evident that the design procedure 
must endeavour to minimize the likelihood 
of a shear failure, even during the largest 
intensity shaking. This is achieved by 
evaluating the flexural capacity of a wall 
from the properties shown on the structural 
drawings. With proper allowance for various 
factors, to be examined in "Capacity Design 
Procedures", the likely maximum of the 
moment that can be extracted from a shear 
wall structure during an extreme seismic 
inelastic displacement can be readily 
evaluated. The shear force associated 
with the development of such a moment can 
then be estimated. This must be done using 
conservative estimates. Subsequently the 
wall can be reinforced so as to possess 
corresponding shear strength. 

When the shear strength of a wall is 
not in excess of the flexural strength, a 
situation which commonly arises in squat 
shear walls, not only does stiffness 
degradation occur but the attainable full 
capacity of wall will also reduce with 
cyclic displacements. Such an undesirable 
response is shown in figure 6. 

Similar procedures must be followed 
to ensure that other undesirable failure 
modes, such as due to bond and anchorage of 
the reinforcement or sliding along 
construction joints, will not occur while 
the maximum flexural capacity of the wall, 
usually at its base, is being developed 
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several times in both directions of the 
loading. 

Capacity design procedures will 
ensure that the desired hierarchy in the 
energy dissipating mechanism can develop. 
The procedure is quantified and discussed 
in detail in "Capacity Design Procedures". 

ANALYSIS PROCEDURES: 

Modelling Assumptions 

Modelling of member properties -

When, for the purpose of either a 
static or dynamic elastic analysis, stiff­
ness properties of various elements of 
reinforced concrete shear wall structures 
need be evaluated, some approximate 
allowance for the effects of cracking 
should be made. In this, it is convenient 
to assume that reinforced concrete components 
exhibit properties that are similar to those 
of elements with identical geometric 
configurations but made of perfectly elastic, 
homogeneous and isotropic materials. For 
the sake of simplicity an approximate allow­
ance for shear and anchorage deformations 
is also made. 

These recommendations for modelling 
may be considered to lead to acceptable 
results when the primary purpose of the 
elastic analysis is the determination 
of internal structural actions that result 
from the specified lateral static loading 
or from dynamic modal responses. The 
estimates given below are considered to be 
satisfactory also for the purpose of 
predicting the fundamental period of 
the structure and for checking deflections 
in order to satisfy code specified limits 
for deflections or separations of non­
structural components. 

In ductile earthquake resisting struct­
ures significant inelastic deformations 
are expected. Consequently the allocation 
of internal design actions in accordance 
with an elastic analysis should be considered 
as one of several acceptable solutions which 
satisfy the unviolable requirements of 
internal and external equilibrium. As 
will be seen subsequently, deliberate 
departures in the allocation of design 
actions from the elastic solutions are 
not only possible, but they may also be 
desirable. 

In arriving at the equivalent stiffness 
of a wall section, flexural deformations of 
the cracked wall, anchorage deformations at 
the wall base and shear deformations after 
the onset of diagonal cracking should be 
considered. Detailed steps of these 
approximations are set out in Appendix I. 

De formations of the foundation 
structure and the supporting ground, such as 
tilting or sliding, are not considered in 
this study, as these produce only rigid 
body displacement for the shear wall super­
structure . Such deformations should, how­
ever, be taken into account when the period 
of the structure is being evaluated or when 
the deformation of a shear wall is related to 
that of adjacent frames or walls which are 
supported on independent foundations(5) m 

Accordingly, for cantilever shear 
walls subjected predominantly to flexural 
deformations, the equivalent second moment 
of area may be taken as 60% of the value 
based on the uncracked gross concrete area 
of the cross section, with the contribution 
of reinforcement being ignored i.e. 

I = 0.60 I e g (B-5) 

When elastic coupled shear walls are 
considered, where, in addition to flexural 
deformation, extensional distortions due to 
axial loads are also being considered, 
the equivalent moment of inertia and area 
may be estimated as follows: 

(a) For a wall subjected to axial tension 

I = 0.5 I 
e g A = 0.5 A e g 

(B-6) 

(B-7) 

(b) For a wall subjected to compression 

(B-8) 

(B-9) 

I = 0.8 I 
e g 

A = A e g 
(c) For diagonally reinforced coupling 

beams 

I = 0.4 I e g (B-10) 

(d) For conventionally reinforced coupling 
beams or coupling slabs 

0.2 I (B-ll) 

When it is necessary to make a realistic 
estimate of the deformations of an elastic 
wall system which is subjected to a 
relatively high intensity loading, the 
absolute value of the stiffness is required. 
Rather than specify a stiffness, an 
equivalent second moment of area of the 
wall section, I , will be defined in 
order to allow Heflections to be estimated 
for various patterns of loading. The 
first loading of a wall up to and beyond 
first cracking is of little interest in 
design. In this recommendation only 
deformations of the wall, in which cracks 
have fully developed during previous 
cycles of elastic loading, will be consid-
ered. ~ * 

In the above expressions the subscripts 
"e" and "g" refer to the "equivalent" and 
"gross" properties respectively. 

When only slabs connect adjacent shear 
walls, the equivalent width of slab to 
compute I may be taken as the width of the 
opening bStween the walls or 8 times the 
thickness of the slab, whichever is less. 

For cantilever walls with aspect ratios, 
h /I , larger than 4, the effect of shear 
deformations upon stiffness may normally be 
neglected. When a combination of "slender" 
and "squat" shear walls provide the seismic 
resistance, the latter may be allocated an 
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Fig. 4 - Load-Displacement Response for (1) 
Idealized, (2) Optimal, (3) (4) Repeated Shear 
Affected Conditions in Reinforced Concrete 
Members. 

Fig. 5 - The Hysteretic Response of a Cantilever Shear Wall with 
Significant Shear Deformations (11) 

Fig. 6 - The Hysteretic Response of a Shear Wall in which Shear 
governs the strength. 
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WIDECOLUMN / a i 
FRAME F i 9 - 7 T h e Modelling of Coupled Shear Walls 

for (a) Frame Analysis or (b) Laminar Analysis 

Outline of wall 
Flexible member of frame 
Rigid portion 

ie, Finite Joint 

J- 4> 

Axial Tension T (Kips) 
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•5 1-0 1-5 2-0 2'5 3-0 
Laminar Shear q (Kip / inch) 
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Shear V, (Kips) Moment M, (x 1000 Kip, ins.) 

Fig. 8 - The Results of the Laminar Analysis of a Laterally Loaded Coupled Shear Wall 
Structure. 
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excessive proportion of the total load if 
shear distortions are not accounted for. 
For such cases, i.e. when h /% < 4, it 
may be assumed that w w 

I = w 

where 

1.2 + F 

30 I 
F = 

h 2 b I w w w 

(B-12) 

(B-13) 

A more accurate estimate of flexural 
deformations may be made if the ratio of 
the moment causing cracking to the maximum 
applied moment is evaluated and an improved 
value of I is used in Eqs. (B-12) and 
(B-13) thus 

I = e M 

where b 

(B-14) 

- web thickness of wall section 
= horizontal length of wall 

= height of wall 
= cracking moment according to 

Eq. (B-15) 
= maximum moment at which 

deflection is computed 

= moment of inertia of cracked 
section transformed to concrete 

where f 

(B-15) 

= the modulus of rupture of 
concrete = 0 . 6 2 /f 1" MPa c 

= distance from centroidal axis 
of gross section, neglecting 
the reinforcement, to extreme 
fibre in tension 

= specified compressive strength 
of concrete, MPa 

- second moment of area of the 
gross concrete section 

In Eq. (B-12) some allowance has also 
been made for shear distortions and 
deflections due to anchorage (pull-out) 
deformations at the base of a wall, and 
therefore these deformations do not need 
to be calculated separately. 

Deflections due to code ̂  - specified 
lateral static loading may be determined 
with the use of the above equivalent 
sectional properties. However, for 
consideration of separation of non-structural 
components and the checking of drift 
limitations the appropriate amplification 
factor given in the c o d e d ) , must be used. 

Geometric modelling -

For cantilever shear walls it will 
be sufficient to assume that the sectional 
properties are concentrated in the vertical 
centre line of the wall. This should be 
taken to pass through the centroidal axis 
of the wall section, consisting of the 
gross concrete area. 

When cantilever walls are interconnected 
at each floor by a slab it is normally 
sufficient to assume that the floor will 
act as a rigid diaphragm. Thereby the 
positions of walls relative to each other 
will remain the same during the lateral 
loading of the shear wall assembly. By 
neglecting wall shear deformations and those 
due to torsion and restrained warping of 
an open wall section, the lateral load 
analysis can be reduced to that of a set 
of cantilevers in which flexural distortions 
only will control the compatibility of 
deformations. Such analysis,based on first 
principles, can properly allow for the 
contribution of each wall when it is sub­
jected to deformations due to floor 
translations or torsion^ it is to 
be remembered that such an elastic analysis, 
however approximate it might be, will 
satisfy the requirements of static 
equilibrium, and hence it will lead to a 
satisfactory distribution of internal 
actions among the walls of an inelastic 
structure. 

When two or more walls in the same 
plane are interconnected by beams, as is 
the case in coupled shear walls shown in 
figure 17, it will be necessary to account 
for more rigid end-zones where beams 
frame into walls. Such structures should 
be modelled as shown in figure 7a. 
Standard programs written for frame 
analyses(6,7) m a y then be used. Alter­
natively coupled shear walls may be modelled 
by replacing the discrete coupling beams 
with a continuous set of elastic connecting 
l a m i n a e ^ a s shown in figure 7b. The 
internal actions resulting from such an 
analysis can be readily converted into dis­
crete moments, shear or axial forces that 
develop in each floor level. The results 
of such an analysis are shown in figure 8. 
The continuous curves for beam shear, moment 
and axial load on the walls result from the 
mathematical modelling used in figure 7b. 
The stepped lines in figure 8 show the 
conversion of these quantities into usable 
design actions. 

The analysis of wall sections 

Because of the variability of wall 
section shapes, design aids, such as axial 
load-moment interaction charts for 
rectangular column sections, cannot often 
be used. The designer will have to resort 
to the working out of the required flexural 
reinforcement from first principles. 
Programs can readily be developed for 
minicomputers to carry out the section 
analysis. The manual section design 
usually consists of a number of successive 
approximation analyses of trial sections. 
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Fig. 9 - Axial Load-Moment Interaction Curves for an Unsymmetrical Shear Wall Section. 

Fig. 10 - Axial Load-Moment Interaction Curves for a Channel 
Shaped Wall Section (2) 
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With a little experience convergence can be 
fast. 

One of the difficulties that arises 
in the section analysis for flexural strength, 
with or without axial load, is the multi-
layered arrangement of reinforcement. A 
very simple example of such a wall section 
is shown in figure 9. The four sections 
are intended to resist the design actions 
at four different levels of the structure. 
When the bending moment (assumed to be 
positive) causes tension at the more 
heavily reinforced right hand edge of the 
section, net axial tension is expected 
on the wall. On the other hand, when 
flexural tension is induced at the left 
hand edge of the section by (negative) 
moments, axial compression is induced in 
that wall. It is a typical loading 
situation in one wall of a coupled shear 
wall structure, such as shown in figure 7. 

The moments are expressed with an 
eccentricity of the axial load, measured 
from the axis of the section, which, as 
stated earlier, is taken through the 
centroid of the gross concrete area rather 
than through that of the composite section. 
It is expedient to use the same reference 
axis also for the analysis of the cross 
section. It is evident that the plastic 
centroids in tension or compression do not 
coincide with the axis of the wall section. 
Consequently the maximum tension or 
compression strength of the section, 
involving uniform strain across the entire 
wall section, will result in axial forces 
that act eccentrically with respect to the 
axis of the wall. These points are 
shown in figure 9 by the peak values at 
the top and bottom meeting points of the 
four sets of curves. This representation 
enables the direct use of moments and forces, 
which have been derived from the analysis 
of the structural system, because in both 
analyses the same reference axis has been 
used. 

Similar moment-axial load interaction 
relationships can be constructed for 
different shapes of wall cross section. 
An example for a channel shaped section 
is shown in figure 10. It is convenient 
to record in the analysis the neutral 
axis positions for various combinations 
of moments and axial forces, because these 
give direct indication of the curvature 
ductilities involved in developing the 
appropriate strengths, an aspect examined 
in "Limitations on Curvature Ductility". 

Analyses for Equivalent Lateral Static 
Loads 

The selection of load 

The selection of the lateral static 
load, to determine the appropriate design 
actions which in turn lead to the desired 
strength, is in accordance with the 
earthquake provisions of the loadings 
c o d e d ) . Suitable structural type 
factors, S, which affect the total design 
base shear, have been suggested in "Types 
of Ductile Structural Walls'and elsewhered). 

To determine the magnitude of the 
basic seismic coefficient the period of 
the structure is required. This in 
turn involves the estimation of the 
structural stiffness at a state when, 
due to high intensity elastic dynamic 
excitation, the reinforced concrete 
components have extensively cracked. A 
suggested procedure for estimating stiff­
nesses for this purpose is outlined in 
"Modelling of member properties1' . 

With this information the intensity 
of the lateral design loading and its 
distribution over the height can be deter­
mined because all other parameters (such 
as importance and risk factors) are spec­
ified in the loadings coded) m using the 
appropriate model, described in the 
previous section, the analysis to determine 
all internal design actions may then be 
carried out. 

Redistribution of actions in the inelastic 
structure 

Because the structure is expected to 
be fully plastic when it develops its 
required strength, a departure from the 
elastic distribution of actions in walls 
linked together is acceptable as long as 
the total strength of the system is not 
reduced. For example the elastic analysis 
for the prescribed load may have resulted 
in bending moment patterns in three 
identically distorted shear walls, as 
shown in figure 11 by the full line 
curves. It is seen that these are 
proportional to the stiffnesses that were 
defined in "Modelling of member properties". 
It may be desirable to allocate more load 
to wall 3 because, for example in the 
presence of more axial compression, it 
could resist more moment with less flexural 
reinforcement (see figure 9 ) . As the 
dashed curves show the design moments for 
wall 1 and wall 2 have been reduced and 
those of wall 3 have been increased by the 
same amount, so that no change in the 
total moment of resistance occurs. 

In order to ensure that there will 
be no significant difference in the ductility 
demands when all three walls are required 
to develop plastic hinges, it is recommended 
that moment redistribution between walls 
should not change the maximum value of 
the moment in any wall by more than 30%. 
This is seen to be satisfied in the 
example shown in figure 11. When such 
redistribution is used in the design of 
walls, the floor diaphragms should also 
be designed to be capable of transferring 
the corresponding forces to each wall. 

Similar consideration suggests that, 
if necessary, the maximum shear force 
indicated by the elastic analysis in 
coupling beams of shear walls could be 
reduced by up to 20% provided that 
corresponding increases in the shear 
capacities of beams at other floors are 
made. With reference to figure 8, this 
would mean a reduction of the shear 
forces at and in the vicinity of the 
3rd storey with appropriate increases 
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in the lower and particularly upper 
storeys, so that the total area within 
curve "q" does not decrease. 

These design quantities may then be 
used to proportion the wall sections so 
as to provide the required dependable 
strength in accordance with the Concrete 
Design Code d ) , 

Dynamic Analyses 

For most buildings in which reasonable 
uniformity in layout and stiffness prevails 
over the height of the structure, the 
derivation of design quantities from an 
elastic analysis for the coded) specified 
lateral static loading is likely to assure 
as satisfactory a seismic performance as a 
more sophisticated dynamic analysis. 
However, when abrupt changes, such as 
setbacks or other discontinuities, occur, 
the dynamic response may expose features 
which may not be adequately provided for 
if the static analysis is used. For such 
situations the spectral modal dynamic 
analysis is recommendedd,19) # 

results need to be scaled and if necessary 
the static load analysis may be suitably 
adjusted to provide the desired design 
quantities. 

For unuaual buildings or for special 
structures a time history dynamic analyses 
may be necessary. With the development 
of analysis programs( 6 * 9 ) , in which the 
cyclic response of plastic hinges can be 
modelled with a high degree of sophistic­
ation, it is now possible to predict the 
response of a building to a selected ground 
excitation. In this, moments, shear and 
axial forces as well as inelastic deform­
ations, deflections, storey drifts etc. 
are evaluated at every time step during 
the specified earthquake record. Maxima 
encountered during the entire duration of 
the excitations are also recorded. It is 
an analysis and not a design tool, and for 
this reason it may be used to check the 
performance of the structure as designed. 
In the definition of properties the probable 
strengths of the critical regions, discussed 
in 11 Probable Strength", should be used. 
The analysis may warrant certain changes to 
be made. 

In the selection of earthquake records 
the designers should consider a represent­
ative excitation for the locality, which 
might test the design for its suitability 
in damage control. Such an analysis 
will reveal whether adequate stiffness 
has been provided. A viscous damping of 
5% critical is suggested for such analyses. 

Another study may be made for an earth-
quate record representing the largest 
credible excitation that would be expected 
in the locality during the probable life 
of the building. Thereby the inelastic 
deformations, such as plastic hinge 
rotations, and maximum actions, such as 
shear forces across inelastic regions 
of shear walls, can be predicted and hence 
compared with values that were envisaged 
in the design. For such a study a 
viscous damping of 8-10% of critical may 

be used. 

Torsion 

As in all structures in seismic areas, 
symmetry in structural layout should be 
aimed at. This will reduce torsional 
effect due to the noncoincidence of the 
centre of rigidity, CR, (centre of 
stiffness) and the centre of gravity, 
CG, (centre of mass). Typical eccentric­
ities with respect to the two principal 
actions of design loading, e and e , are 
shown for a set of shear wal?s of a*n 
apartment building in figure 12. Deliberate 
eccentricities should be avoided, if 
possible, because uneven onset of plast-
ification during large excitations may 
aggravate eccentricity and this in turn 
may lead to excessive ductility demand 
in lateral load resisting elements 
situation far away from the centre of 
rotation. 

An example of the unintended inelastic 
response of two ductile shear walls is 
illustrated in figure 13a. Because the 
centre of the mass, CG, is approximately 
at the centre of the plan, approximately 
one half of the induced earthquake load, 
E, will have to be resisted by each of 
the end walls at A and B. It may be 
difficult to prevent Wall A from having 
a lateral load carrying capacity consider­
ably in excess of that on Wall B. Hence 
energy dissipation due to inelastic 
deformation may well be restricted to 
Wall Bonly which, as a result of this, 
could be subjected to a displacement, A , 
much larger than expected. Irrespective 
of the relative stiffness or strength of 
the two shear walls, structures in which 
only two principal planes of lateral 
resistance exist parallel to either major 
axes, are likely to be torsionally 
unstable during large inelastic seismic 
excitations. 

The structural layout shown in figure 
13b is symmetrical with respect to the 
earthquake loading E. It is seen that 
any eccentricity introduced during the 
inelastic response of the two end walls 
will result in torsion which is readily 
restricted by three walls acting in the 
perpendicular direction. These walls 
are likely to remain elastic and hence 
they will ensure a uniform inelastic 
translation of each floor, thereby reducing 
the ductility demand on each of the end 
walls at A and B. 

The example structure shown in figure 
13b also shows that, in spite of consider­
able eccentricity, it is likely to be much 
more tolerant with respect to horizontal 
earthquake loading, H, in the other 
direction. The very significant torsional 
resistance of the two end walls, at A and 
B, can ensure that the other three walls 
will dissipate seismic energy because of 
approximately equal inelastic wall 
diaplacements in the direction of the 
excitation H. Figure 13b thus shows a 
desirable, torsionally stable structural 
layout in which the full utilization of 
walls in one direction of seismic actions 
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Fig. 11 - Load Redistribution between Three Inelastic Shear Walls. 
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Fig. 12 - Shear Wall Layout for an Apartment Building (2) 
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Fig. 13 - The layout of Shear Walls affects the Torsional 
Stability of the Lateral Load Resisting System. 
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is enhanced by (elastic) walls acting in the 
perpendicular direction by preventing 
inelastic storey twist. 

Small single shear cores are 
particularly vulnerable to torsional 
instability. 

CAPACITY DESIGN PROCEDURES: 

The Definition of Strength 

Before a hierarchy in the establish­
ment of desirable energy dissipating mech­
anisms can be established, it is necessary 
to define the various strengths that might 
have to be quantified in the design. 
These have been studied in recent public­
ations (2,8) a n d f o r this reason only a 
brief summary of the definitions and their 
relative values are given here. 

Ideal strength 

The ideal or nominal strength of a 
section is obtained from established theory 
preducting failure behaviour of the section, 
based on assumed section geometry, the 
actual reinforcement provided and ( 

specified material strengths, such as f c 

and f . 
y 

Dependable strength 

To allow for the variations in strength 
properties and the nature and consequence 
of the failure, only a fraction of the ideal 
strength is relied upon to meet the load 
demand specified by the loadings coded) m 

Therefore strength reduction factors, <J>, 
are introduced(8) t o arrive at the depend­
able or reliable strength thus: 

Dependable Strength = (f> Ideal Strength 

Probable strength 

Routine testing of materials or 
components indicates the probable strength 
attainable by prototype components in the 
structure. The designer will seldom 
require this information. However, when 
the likely dynamic response of a shear 
wall structure during a selected ground 
excitation is to be studied analytically, 
as discussed in "Dynamic Analyses", it is 
more appropriate to consider the probable 
properties of materials at critical member 
sections. 

Overstrength 

The overstrength takes into account 
all the possible factors that may cause a 
strength increase above the ideal strength. 
These include steel strength higher than 
the specified yield strength and the 
additional strength due to strain hardening 
at large deformations, concrete strength 
higher than specified, section sizes larger 
than assumed in the initial design, 
increased axial compression strength in 
flexural members due to lateral confinement 
of the concrete, and participation of 
additional reinforcement such as that 
placed nearby for construction purposes. 

Relationship between strengths 

When using Grade 275 flexural rein­
forcement made in New Zealand the following 
relationships, based on the actual reinforce­
ment provided, may be used to determine the 
flexural strengths of members -

(i) Dependable Strength = 0 . 9 0 Ideal 
Strength 

(ii) Probable Strength = 1.15 Ideal 
Strength 

(iii) Overstrength = 1.25 Ideal 
Strength 

(iv) Overstrength = 1.39 Dependable 
Strength 

(v) Probable Strength = 0.90 Over-
strength 

(vi) Probable Strength - 1.28 Dependable 
Strength 

It is preferable, however, to determine 
these values from measured properties of 
the steel to be used. 

It is recommended that wherever design 
actions, such as shear forces across shear 
walls, are derived from the flexural over-
strength of the wall, the ideal strength 
be considered to be sufficient to resist it. 
Whereas in strength design the actions 
derived from factored loads, such as moment, 
M , or shear, V , need to be equal or smaller 
u u than the corresponding dependable strength 

provided, such as <j)M̂  or <j>V\, where M. and 
V\ refer to ideal strengths of a section, in 
capacity design the criteria should be met: 

M° <: M i or V° 4 V ± (B-16) 

where M° and V° are the design actions at a 
particular section derived from capacity 
design procedures. 

Cantilever Walls 

The determination of the flexural and 
shear load on cantilever walls, taking into 
account moment redistribution as outlined 
in "Redistribution of actions in the 
inelastic structure", is a simple procedure. 

The consideration of flexure and overstrength 

When the appropriately factored gravity 
forces are also considered the required 
flexural reinforcement can be readily 
determined from the principles reviewed in 
'The analysis of wall sections'. In this 
the designer should attempt to provide the 
minimum flexural reinforcement to just 
satisfy the dependable moment demand at 
the wall base. Apart from economy it 
should be the designer's aim to keep the 
overstrength of the wall to the minimum, 
otherwise demands for shear resistance and 
on the foundations might be unnecessarily 
compounded. In very lightly loaded walls, 
minimum requirement for wall reinforcement 
may override this criterion. The flexural 
overstrength is expressed by the "overstrength 
factor", (J> , which is defined as follows: 
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i _ overstrength moment of resistance _ M 
o moment resulting from code loading 

'code 

(B-17) 

where both moments refer to the base 
'section of the wall. 

Even though in most walls Grade 380 
reinforcement will be used, the flexural 
overstrength at the base may be assumed 
to be only 1.25 times the ideal flexural 
strength of that section. The reason 
for this is that cantilever walls will 
seldom be required to develop plastic 
hinge rotations involving excessive strain 
hardening of the tensile reinforcement. 
However, if wall configuration, slenderness 
or load demand indicate that tensile strains 
in excess of 10 times yield strain may be 
involved with Grade 380 reinforcement, 
it should be assumed that <\> = 1.6. It 
should also be appreciated ?hat in compress­
ion dominated wall sections the flexural 
resistance will be significantly larger 
if the concrete strength at the time of 
the earthquake is much in excess of the 
specified value f^. 

Moment design envelopes 

Once the flexural overstrength of a 
cantilever wall is determined at its base, 
it is necessary to define the reduction 
of moment demand at upper floors. 

This used to be done by utilising 
the bending moment diagram. It is to be 
recognized, however, that the moment 
envelope that would be obtained from a 
dynamic analysis is quite different from 
the bending moment diagram drawn for the 
specified lateral static-load. This has 
been identified from modal spectral 
analyses(12) a s w e i i as from time history 
dynamic studies(13) m Typical bending 
moment envelopes for 20 storey cantilever 
shear walls with different base yield 
moment capacities, subjected to a particular 
ground excitation, are shown in figure 14. 
It is seen that there is an approximate 
linear variation of moment demand during 
dynamic excitations. 

If the flexural reinforcement in a 
cantilever wall were to be curtailed accord­
ing to the bending moment diagram, then 
flexural yielding (plastic hinges) could 
occur anywhere along the height of the 
building. This would be undesirable 
because potential plastic hinges do require 
special detailing, and hence more transverse 
reinforcement. Moreover, flexural yielding 
reduces the potential shear resisting 
mechanisms, and this again would require 
additional (horizontal) shear reinforcement 
at all levels where hinging might occur. 
This is discussed in "Control of Diagonal 
tension and compression". 

For the reasons enumerated above it 
is recommended that the flexural reinforce­
ment in a cantilever wall be curtailed 
so as to give a linear variation of moment 
of resistance. The recommendation is 
illustrated in figure 15. The linear 
envelope, shown by the dashed line, should 
be displaced by a distance equal to the 
horizontal length of the wall, I . This 

allows for the fact that due to shear the 
internal flexural tension in a beam section 
at a section is larger than the bending 
moment at that section would indicate(2,8). 
Accordingly the design envelope, indicating 
the minimum ideal moment of resistance to 
be provided, is obtained. Vertical 
flexural bars in the cantilever wall, to 
be curtailed must extend beyond the section 
indicated by the design envelope of figure 
15, by at least the development length 
for such bar(8) a 

Flexural ductility of cantilever walls 

To ensure that a cantilever wall can 
sustain a substantial portion of the 
intended lateral load at a given displace­
ment ductility ratio, J J^, it is necessary 
that it can develop in its plastic hinge 
at the base a certain curvature ductility 
ratio, y ̂ . These ductility ratios are 
traditionally defined as follows: 

Displacement ductility ratio: 
A 

Curvature ductility ratio: 

|J = Y u 

(B-18) 

(B-19) 

where A and A are the deflections at the 
top of &ie cantilever at the ultimate state 
and at the onset of yielding and and 

are the corresponding curvatures i.e. 
rotations of the section, at the base of 
the cantilever. 

The relationship between the curvature 
ductility of the base section and the 
displacement ductility of the wall will 
depend on the length of the plastic hinge 
at the base(2) and the wall height to 
horizontal lenath ratio, h /I . The 

w w 
variation of curvature ductility demand 
with h /£ for various displacement demands 
is shown in figure 16. The dark bands 
represent the limits for the length of the 
plastic hinge, as obtained from two 
different proposed equations(I 4). It is 
seen that for slender cantilever walls 
which are expected to be subjected to a 
displacement ductility demand of four, 
very considerable curvature ductility will 
need to be developed at the base. This 
will need to be taken into consideration 
when the detailing of the potential plastic 
hinge zone is being undertaken. (See 
"Satisfying Ductility Demands"). 
Shear strength of cantilever walls 

It was emphasized in the previous 
sections that if a shear failure is to be 
avoided, the shear strength of a wall must 
be in excess of the maximum likely shear 
demand. Therefore the shear strength 
must be at lease equal to the shear 
associated with the flexural overstrength 
of the wall i.e. V . * 

m m 
ro code 

It has been demonstrated that during 
the inelastic dynamic response of a shear 
wall, with a given base hinge moment capacity, 
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Fig. 14 - Dynamic Bending Moment Envelopes for a 20 
Storey Shear Wall with different Base Yield Moment 
Capacities (13). 
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Fig. 15 - Recommended Design Bending 
Moment Envelope for Cantilever Shear 
Walls. 
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Fig. 16 - The Variation of Curvature Ductility at 
the base of Cantilever Shear Walls with the Aspect 
Ratio of the Walls and the Imposed Displacement 
Ductility Demand (14). 
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considerably larger shear forces can be 
generated than those predicted by static 
analysis(l^)_ For this reason the design 
shear forces must be magnified further. 
Therefore cantilever shear walls at all 
levels should possess an ideal shear 
• capacity, V\ , of not less than 

V . = 0) <f> V . (B-20) wall v o code 
where V is the shear demand derived 
from coSeT?) loading, <j> was defined by 
Eq. (B-17) and the dynamic shear 
magnification factor is given by Eq. (B-21) 
for buildings up to 5 storeys high 

a) = 0. IN + 0 . 9 (B-21) 

where N is the number of storeys. For 
walls taller than 5 storeys the value of 
to is given in Table B-l(l2) However, 
tKe ideal shear strength need not exceed 

V , < (4/S) V , wall 7 code 

TABLE B-l 
DYNAMIC SHEAR 

MAGNIFICATION FACTOR 

Number of Storeys 

1 to 5 Eq.(B-21) 
6 to 9 1. 5 

10 to 14 1. 7 
15 and over 1. 8 

(B-22) 

It may be that 
the flexural 
capacity pro­
vided at the 
base of the 
structure is 
so large that 
inelastic 
response of 
the shear wall 
will become 
unlikely. For 
such situations 

Eq. (B-22) sets an upper limit whereby the 
product <JO <J> need not be larger than 4/S. 
For exampYe°a single 8 storey cantilever 
shear wall need not possess an ideal 
shear strength in excess-of 4/1.2 - 3.33 
times the code specified shear load, v

c o c ^ e 

The provisions to meet the design 
shear load V"w 1 1 from Eq. (B-20) are 
given in "Control of shear failure". 

Coupled Shear Walls 

In the following sections a recommended 
step by step capacity design procedure 
for coupled shear walls is outlined. 
When necessary reference should be made to 
figure 7 or figure 17. 

Geometric review 

Before the static analysis procedure 
commences the geometry of the structure 
should be reviewed to ensure that in the 
critical zones compact sections, suitable 
for energy dissipation, will result. 
Section configurations should satisfy 
criteria outlined in "Stability". 

Lateral static load 

The appropriate lateral static load, 
in accordance with the loadings code^ 1' 
is to be determined. To do this it 
might be necessary to estimate the probable 
value, S , of the structural type factor 
S, recommended in "Types of Ductile 
Structural Walls"(b). 

Elastic analysis 

With the evaluation of the lateral 
static load the complete analysis for the 
resulting internal structural actions, 
such as moments, forces etc. can be 
carried out. In this the modelling 
assumption of "Modelling Assumptions ,r 

should be observed. Typical results 
are shown in figure 8. 

Confirmation of the structural type factor 

Having obtained the moments and axial 
forces at the base of the structure the 
moment parameter 

A - 5i 
M 

(B-l) 

as discussed in "Types of Ductile Structural 
Walls"(b), can be determined. The 
significance of the parameter may also be 
seen in figure 18. With the use Eq. 
(B-3) the exact required value of the 
structural type factor, S can be found. 
If this differs from that assumed earlier 
i.e. S , all quantities of the elastic 
analysis are simply adjusted by the 
multiplier S/S . 

P 
Checking of foundation loads 

To avoid unnecessary design comput­
ations, at this stage it should be checked 
whether the foundation structure for the 
coupled shear walls would be capable of 
transmitting at least 1.5 times the over­
turning moment, M , received from the 
superstructure (see figure 17), to the 
foundation material (soil). It is to 
be remembered that in a carefully designed 
superstructure, in which no excess strength 
of any kind has been allowed to develop, 
1.4 times the overturning moment resulting 
from code loading M will be mobilized 
during large inelastic displacements. 
(See 11 Relationship between strengths n) . 
Hence the foundation system must have a 
potential strength in excess of 1.4 M , 
otherwise the intended energy dissipa?ion 
in the superstructure may not develop.(5) 

Design of coupling beams 

Taking flexure and shear into account 
the coupling beams at each floor can be 
designed. Normally diagonal bars in 
cages(2) should be used, preferably with 
Grade 2 75 reinforcement. A strength 
reduction factor of <j) = 0.9 is appropriate. 
Particular attention should be given to 
the anchorage of caged groups of bars 
and to ties which should prevent inelastic 
buckling of individual diagonal bars. 
(See "Detailing of Coupling Beams"). 
The beam reinforcement should match as 
closely as possible the load demand. 
Excessive coupling beam strength may lead 
to subsequent difficulties in the design 
of walls and foundations. 

Determination of actions on the walls 

In order to find the necessary 
vertical reinforcement in each of the 
coupled walls (figure 17) at the critical 
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base section, the following loading cases 
should be considered: 

i) P e = P ^ - 0.9P n axial tension (or 

ii)' P 

smal? compression) and 

axial compression P + P^ + P T 
e <5 afid M 2

L R 

where P^ = axial design load including 
earthquake effects 

P axial tension or compression 
q induced in the wall by the 

lateral static loading 

the shear overcapacity, Q., of each 
coupling beam, as detailed, based on a yield 
strength of the diagonal reinforcement 
of 1.25 f £ 345 MPa is determined. 
Where slaMs, framing into coupling beams, 
contain reinforcement parallel to the 
coupling beams which is significant when 
compared with the reinforcement provided 
within the beam only, the possible 
contribution of some of this the reinforce­
ment to the shear capacity of coupling beams 
should also be considered in computing 
overstrength. 

Earthquake induced axial loads 

iii) 

P D = axial compression due to dead 
load 

P L = axial compression due to reduced 
R live load L R 

M 1 = moment at the base developed 
concurrently with earthquake 
induced axial tension load 
(figure 17c) 

= moment at the base developed 
concurrently with earthquake 
induced axial compression load 
(figure 17c) 

If case (i) above is found to result 
in large demand for tension reinforce­
ment or for other reasons, a redistri-
bution of the design moments from the 
tension wall to the compression wall 
may be carried out in accordance with 
'Redistribution of actions in the 
inelastic structure', within the 
following limits: 

(a) > 0.7 M± 

(b) = M 2 + M x - < 1.3 M 2 

where and M' are the design moments 
for the tension and compression walls 
respectively, after the moment 
redistribution has been carried out. 

The maximum feasible axial load induced 
in one of the coupled walls would be obtained 
from the summation of all the cgupling beam 
shear forces at overcapacity, , applied to 
the wall above the section that is considered 
For structures with several storeys this 
may be an unnecessarily conservative estimate 
and accordingly it is recommended that the 
wall axial load at overstrength be estimated 
with 

= (1 
n 

—)Z 0° S0}. U i l 
(B-23) eq 

where n = number of floors above level i. 
The value of n in Eq. (B-2 3) should not be 
taken larger than 20. 

The flexural overcapacity of the entire 
structure 

In order to estimate the maximum likely 
overturning moment that could be developed 
in the fully plastic mechanism of the 
coupled shear wall structure, it is 
necessary to assume gravity loads that are 
realistic and consistent with such a 
seismic event. Accordingly, for this purpos 
only, the total overstrength axial loads 
to be sustained by the walls should be 
estimated as follows: 

i) For tension of minimum compression 

P_ P° = P ° I "eq 
In the above three steps, which would 

complete the strength design of the 
structure, a capacity reduction factor of 
<f> = 0. 9 may be used for all cases. The 
justification for this is considered to 
result from a subsequent requirement, 
according to which compression dominated 
wall sections specifically need to be 
confined to ensure sufficient curvature 
ductility. 

Using these quantities the vertical 
flexural reinforcement for each wall, with 
Grade 2 75 or Grade 380 steel, can now be 
determined in accordance with "The 
analysis of wall sections'*. 

Overcapacity of coupling beams 

In order to ensure that the shear 
strength of the coupled shear wall 
structure will not be exceeded and that the 
maximum load demand on the foundation is 
properly assessed, i.e. to fulfill the 
intent of "HierarchyinEnergy Dissipation", 
the overstrength of the potential plastic 
regions must be estimated. Accordingly 

ii) For compression 

P? = P ° + P n 2 eq D 

It is now possible to estimate the 
flexural overstrength capacity of each 
wall section, as detailed, that may be 
developed concurrently with the above 
axial forces. The moments of resistance, 
which may be based on material strengths 
defined by 1.25f and 1.25f', so derived 
for the tension Xnd compression walls 
respectively, are M, and ML. In 
similarity to Eq. (B-17) the overstrength 
factor for the entire coupled shear wall 
structure may be obtained from 

M° + M° + P ° A 
i- 2 eg (B-24) 

In accordance with the assumed strength 
properties of "Relationship between strengths 
the value of <j> so obtained should not be 
less than 1.39? If it is, the design should 
be checked for the error. 
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Fig. 17 - A Comparison of Ductile 
Walls (a) A Cantilever Wall (b) Walls 
Coupled by Strong Coupled Beams 
(c) Walls Coupled by Slabs Only. 

fa) (b) 

100 75 50 25 
Relative moment units 

Fig. 18 - Contribution of Internal Coupling to the Resistance of 
Overturning Moments in Coupled Shear Walls. 

a) El Centro tNS ,1940 
b) Artifical A1 
c) Artifical 81 

Design 
Envelope 

10 20 30 40 50 

Moment (MNm) 

Fig. 19 - Bending Moment Envelopes for 
Coupled Shear Walls (a) Envelope Used 
in Design (b) Envelopes Observed in a 
Theoretical Study (15). 

sihie instability 

Strain Distribution 

Fig. 20 - Strain Patterns for a Rect-
angula Wall Section Subjected to Flexure 
and Axial Load. 
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Wall shear forces 

In similarity to the approach 
employed in the section "Shear strength 
of cantilever walls n for cantilever shear 
walls, the maximum shear force for one 
wall of a coupled shear wall structure 
may be obtained from 

V. w (b 1,wall v Y o 
M° 

1 code 1, 2 

(B-25) 

where cov = dynamic shear magnification 
factor in accordance with 

V 

Eq* (B-20) 

code=shear force on the entire 
shear wall structure at any 
level, derived by the initial 
elastic analysis for code 
l o a d i n g w i t h the appropriate 
S factor. 

£ 4/S in accordance with 
Eq. (B-22) 

The bracketed term in Eq. (B-25) 
makes an approximate allowance for the 
distribution of shear forces between 
the two walls, which, at the development 
of overstrength, is likely to be different 
from that established with the initial 
elastic analysis. It also takes into 
account the approximate redistribution 
of shear forces that may have resulted 
from the deliberate redistribution of 
design moments from the tension to the 
compression wall. 

The required horizontal shear 
reinforcement may be determined now. 
In assessing the contribution of the 
concrete shear resisting mechanism, 
the effects of the axial forces P° and 
P 21 as appropriate should be taken into 
account. 

Confinement of wall sections 

From the load combinations considered 
above the positions of the neutral axes 
relative to the compressed edges of the 
wall sections are readily obtained. From 
the regions of the wall section over which, 
in accordance with the section M Confinement 
of Wall Regions" anti-buckling and/or 
confining transverse reinforcement is 
required, this reinforcement can now be 
determined. 

Curtailment of vertical flexural 
reinforcement 

For the purpose of establishing the 
curtailment of the principal vertical 
wall reinforcement, a linear bending moment 
envelope along the height of each wall 
should be assumed, as shown in figure 19a. 
This is intended to ensure that the 
likelihood of flexural yielding due to 
higher mode dynamic responses along the 
height of the wall is minimized. Details 
for the justification of such an envelope 

were examined in the section "Moment 
design e n v e l o p e s I n a study, in which 
the inelastic dynamic response of a 
coupled shear wall was computed, the moment 
envelopes for responses to three different 
ground excitations, shown in figure 19, 
were obtained(15). 

Foundation design 

The actions at the development of the 
overstrength of the superstructure, P-̂ , 
P°, M° M° and wall shear forces V, and 
Vp, snoula be used as loading on tne 
foundations. For ductile coupled shear 
walls, the foundation structure should 
be capable of absorbing these actions 
at its ideal strength capacity. 

SATISFYING DUCTILITY DEMANDS 

Stability 

When part of a thin wall section is 
subjected to large compression strains, 
the danger of premature failure by 
instability arises. This is the case 
when a large neutral axis depth is required 
in the plastic hinge zone of the wall, 
as shown in figure 20, and the length of 
the plastic hinge is large i.e. one 
storey high or more. The problem is 
compounded when cyclic inelastic deform­
ations occur. Instability should not 
be permitted to govern strength of ductile 
shear walis. 

In the absence of information on the 
"compactness" of reinforced concrete wall 
sections, existing code rules' 1°) , rele­
vant to short columns, are best considered. 
For such columns the effective height to 
width ratio, I /b, should not exceed 1 0 ( 1 6 ' . n 

The relevance of such a code require­
ment to a shear wall may be studied with 
the aid of figure 20. For a certain load 
combination the computed neutral axis 
depth may be c?l so that a considerable 
portion of the wall section will be subject 
to compression. Near the extreme compress­
ion fibre, where, in accordance with 
accepted assumptions, the concrete strain 
at ideal flexural capacity is taken as 
e = 0.003, instability may occur unless 

strain pattern is restricted vertically 
to a very short plastic hinge length. 
Moreover, the strain profile marked (2) 
in figure 20 shows that very limited 
curvature ductility would be available at 
the attainment of the ideal strength of 
the section. To satisfy the intended 
displacement ductility demand for the 
shear wall system, a strain profile 
shown by line (2') may need to be developed. 
Such large concrete compression strains, 
e , could only develop if the concrete 
in this zone is confined, and this will 
be examined in a later section. The 
phenomenon is fortunately rare, but it 
emphasizes the need for considering 
instability. It occurs more commonly 
when a wall has a large tension flange, 
such as shown in figure 22 and figure 35. 

In the absence of experimental 
evidence intuitive judgement was used to 
recommend that, with the exceptions to be 
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Fig. 21 - Parts of a Wall Section to be 
Considered for Instability and which 
Provides Lateral Support. 

ec ' Strain Distributions 

Fig. 22 - Strain Profiles for Channel 
Shaped Wall Sections. 

No ties 
<200 

j r 
Not tied 

BE 
Closed tie >75 

-Need not be tied 
Compression yieId | 
strain may be 
exceeded within 

these limits 

Fig. 23 - Transverse Reinforcement in Potential Yield Zones of Shear Wall 
Sections. 

Confinement (10.4.4>5) 

Longitudinal bars provided 
9ive pB<2/fy 

Required 
region of confinement • 

Longitudinal bars 
provided give 
Pe>2/fy 

Transverse ties 
4.4.3) 

V 
0.5C 

Transverse reinforce-
q ment for shear or use 
* minimum (10.4.4.1) 

Earthquake action 
considered 

-0*003 

0.0015 

5c 

C<Cr 

0.003 
STRAINS -

Fig. 24 - Regions of Different Transverse Reinforcement in a Shear Wall Section. 
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set out subsequently, in the outer half 
of the conventionally computed compression 
zone, the wall thickness b should not be 
less than one tenth of the clear vertical 
distance between floors or other effective 
lines of lateral support, i . Considering 
the ' strain pettern (2) in figure 20, 
this zone extends over s distance of 0.5c2, 
as shown with cross shading. This is an 
area over which the concrete compression 
strain will exceed 0.0015 when the strain 
in the extreme compression fibre of the 
section, consistant with the determination 
of the ideal flexural strength, attains its 
assumed maximum value of 0.00 3. 

When the computed neutral axis 
depth is small, as shown by the strain 
distribution (1) in figure 20, the com­
pressed area may be so small that adjacent 
parts of the wall will stabilize it. 
Accordingly, when the fibre of 0.0015 
compression strain is within a distance 
of the lesser of 2b or 0.15 I from the 
compressed edge, the b > i /iff limit 
should not need to be complied with. In 
terms of neutral axis depth this criteria 
is met when c $ 4b or c < 0.3 i , which­
ever is less. The strain profile (1), 
which occurs commonly in lightly reinforced 
walls with small gravity load, clearly 
satisfies this condition. 

It may be assumed that only in 
buildings 3 storeys or higher would the 
plastic hinge length at the base, extending 
toward the first floor, be large enough 
to warrant an examination of instability 
criteria. 

Certain components of walls, such as 
shown in figure 21, provide continuous 
lateral support to adjacent compressed 
elements. Therefore it is considered 
that any part of a wall, subjected to 
computed strains larger than 0.0015, which 
is within a distance of 3b of such a 
line of support, should be exempted from 
slenderness limitation. Figure 2 shows 
a number of locations that are exempt. 
The shaded part of the flange is considered 
to be too remote to be effectively 
restrained by the web portion of the wall 
and hence it should comply with the b > i /10 
slenderness limitation. In the absence 
of a flange, the width of which is at least 
i /5, a boundary element may be formed 
tRat satisfies the slenderness limit. 
These latter two cases are also shown in 
figure 21. 

Limitations on Curvature Ductility 

By simple limitations of the amount 
of flexural tension reinforcement^) in 
beam sections, it can be ensured that 
adequate curvature ductility, to meet the 
intents of seismic design, will be 
available. Because of the variety of 
cross sectional shapes and arrangements 
of reinforcements that can be used, 
and the presence of some axial load, 
the availability of ductility in shear 
walls cannot be checked by the simple 
process that is used for rectangular 
beams or sections. 

In the analysis of wall sections for 
flexure and axial load, the neutral axis 
depth, c, is always determined. Hence 
the ratio of c/& v, an indicator of the 
curvature ductility required at the 
development of the ideal strength, (figure 
21) can be readily found. Various 
strain profiles, associated with a maximum 
assumed concrete compression strain of e c = 
0.003 are shown by dashed lines in figures 
20 and 22. It is seen that different 
neutral axis depths, c^ and c^* for 
different wall configurations can give very 
different curvature ductilities. 

The curvature ductility demand in the 
plastic hinge zone of cantilever walls was 
related to the displacement ductility in 
1Flexural ductility of cantilever walls 1. 
Typical relationships were also presented 
in figure 16. It will be seen that in a 
relatively slender shear wall with h /I - 8, 
a curvature ductility of approximately ll 
is required if the displacement ductility 
is to be 4. The yield curvature of a 
section may be approximated by <j> = 
( e y + £ c e ) / £ w = 0.0025/* w where y

£ y and 
e e are the steel and concrete strains 
at the extreme edges when the yield strain 
of the reinforcement is just reached. 
Hence the desired ultimate curvature will 
be 4> = 114> = O.Q275/£ . Current 

T u Y y ' w 
strength computations are based on the 
conservative assumption that e = 0.00 3. 
It is found, however, that a strain of 
0.004 can be readily attained in the extreme 
compression fibre of a section before 
crushing of the concrete commences(2). By 
assuming that the maximum concrete strain will 
reach the value of 0.004 it is found that 
the neutral axis depth at this curvature 
needs to be c = 0.004 £ w/0.0275 = 0.145£ w. 
As figure 16 shows however, for h /% 
ratios less than 8 lesser curvature 
ductilities will suffice. 

The above discussion was based on 
cantilevers, for which a structural type 
factor of S = 1 is relevant, and for which 
a displacement ductility demand of 4 might 
arise when the intended base overstrength, 
corresponding with <j)Q = 1.39, is developed. 
For walls with larger S factors or larger 
unintended overstrength (i.e. when 4>q > 1.39) , 
the displacement ductility requirement may 
be assumed to be proportionally reduced. 
Consequently the critical neutral axis depth 
can be conservatively assumed to be 

c = 0.10 <J> Si (B-26) 
c Y o w 

If desired, the designer could carry out 
a more refined analysis, using Eq. (B-27) 
which may show that a larger neutral axis 
depth would provide the desired curvature 
ductility. 

8.6 (j> Si Y o w c = 
C (4 - 0.7S) (17 + h w / £ w ) (B-27) 

Whenever the computed neutral axis depth 
for the design loading on the given section 
exceeds the critical value c , given by Eq. 
(B-26), it will be necessary cto assume that 
increased ductility can be attained only at 
the expense of increased concrete compression 
strains. 
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It is seen on the left hand side of 
figure 22, showing the channel shaped 
cross section of a single cantilever wall, 
that, because of the large available 
concrete compression area, very large 
curvature ductility is associated with 
the development of the flexural strength. 
A given displacement ductility, however, 
may require only a strain pattern shown 
by the heavy line. It is evident that 
this curvature could only be attained in 
the other wall section, shown on the right 
in figure 22, if the concrete compression 
strains increase considerably. The 
same relationship can be seen between the 
strain patterns (1) and {2') shown in 
figure 20. Excessive compression strains 
would lead to failure of the section unless 
the concrete in the core of the compression 
zone is suitably confined. This aspect 
of the design is examined in the next 
section. 

Confinement of Wall Regions 

From the examination of curvature 
relationships in the simple terms of c/l 
ratio, it is seen that in cases when the w 

computed neutral axis is larger than the 
critical value c , given by Eq. (B-26) 
or Eq. (B-27), tne compression region of 
the wall needs to be confined. It does 
not seem necessary to confine the entire 
compression zone. It is suggested, 
however, that the outer half of it be 
confined. Accordingly the following 
simple rules are suggested. 

Reaion of confinement 

A , = 0.12 s, h" f c (0.5 + 0.9-A (B-29) 
s n n f . w yh 

whichever is greater, where the ratio c/£ 
need not be taken more than 0.8. 

In the above equations: 

A , = total effective area of hoops 
s and supplementary cross ties in 

direction under consideration 
within spacing s^, mm^ 

s^ = vertical centre to centre spacing 
of hoop sets, mm 

A * = gross area of the outer half of 
g wall section which is subjected 

to compression strains mm^ 

A * = area of concrete core in the 
outer half of section which is 
subjected to compression strains, 
measured to outside of peripheral 
hoop legs, mm^ 

f = specified compression strength of 
c concrete, MPa 

f , = specified yield strength of hoop 
^ or supplementary cross tie steel, 

MPa 

h" = dimension of concrete core of 
section measured perpendicular 
to the direction of the hoop bars, 
mm 

When the neutral axis depth in the 
potential yield regions of a wall, computed 
for the most adverse combination of design 
loadings, exceeds 

c = 0.10 c£> Si (B-26) c Y o w 

the outer half of the compression zone, 
where the compression strain, computed 
when the ideal flexural strength of the 
section is being determined, exceeds 
0.0015, should be provided with confining 
reinforcement. This confining transverse 
reinforcement should extend vertically 
over the probable plastic hinge length, 
which for this purpose should be assumed 
to be equal to the length of the wall & w , 
as shown in figure 15 and figure 19. 

Confining reinforcement 

The principles of concrete confinement 
(2)to be used are those relevant to column 
sections, with the exceptions that very 
rarely will the need arise to confine 
the entire section of a shear wall. 
Accordingly it is recommended that rect­
angular or polygonal hoops and supplementary 
ties, surrounding the longitudinal bars 
in the region to be confined, should be 
used so that 

Ash = °-3 sh h" ^ - 1 J F T ( 0- 5 + °'9I£) 
c yh w 

( B - 2 8 ) 

These equations are similar to those 
developed by Park^ 1 ^ for columns. The 
area to be confined is thus extending to 
0.5C2 from the compressed edge as shown 
by cross hatching in the examples of 
figures 20 and 22. 

For the confinement to be effective 
the vertical spacing of hoops or supple­
mentary ties, s, , should not exceed 6 times 
the diameter of vertical bars in the confined 
part of the wall section, one third of the 
thickness of the confined wall or 150 mm, 
whichever is less. 

An application of this procedure is 
given in Appendix II. 

Confinement of longitudinal bars 

A secondary purpose of confinement 
is to prevent the buckling of the principal 
vertical wall reinforcement where the same 
may be subjected to yielding in compression. 
It is therefore recommended that in regions 
of potential yielding of the longitudinal 
reinforcement within a wall with two layers 
of reinforcement, where the longitudinal 
reinforcement ratio p„, computed from Eq. 
(B-31), exceeds 2/f , transverse tie 
reinforcement, satisfying the following 
requirements, should be provided: 

(a) Ties suitably shaped should be so 
arranged that each longitudinal bar or 
bundle of bars, placed close to the wall 
surface, is restrained against buckling 
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by a 90 bend or at least a 135 
standard hook of a tie. When two 
or more bars, at not more than 200 mm 
centres apart, are so restrained, 
any bars between them should be 
exempted from this requirement. 

(b) The area of one leg of a tie, A , 
in the direction of potential e 

buckling of the longitudinal bar, 
should be computed from Eq. (B-30) 
where ZA^ is the sum of the areas 
of the longitudinal bars reliant 
on the tie including the tributary 
area of any bars exempted from being 
tied in accordance with (a) above, 

s. ZA, f b y 
te 16 f 

Jh 
100 (B-30) 

Longitudinal bars centered more than 
75 mm. from the inner face of stirrup 
ties need not be considered in 
determining the value of ^A^. 

(c) The spacing of ties along the 
longitudinal bars should not exceed 
six times the diameter of the 
longitudinal bar to be restrained. 

(d) Where applicable, ties may be 
assumed to contribute to both the 
shear strength of a wall element 
and the confinement of the concrete 
core. 

(e) The vertical reinforcement ratio 
that determines the need for 
transverse ties should be computed 
from 

P 0 = 
EA, t 
bs . (B-31) 

where the terms of the equation, 
together with the interpretation of 
the above requirements are shown in 
figure 23. The interpretation of 
Eq. (B-31) with reference to the 
wall return at the left hand end of 
figure 2 3 is as follows : p = 2A, /bs . 

D V 

The requirements of transverse 
reinforcement is a shear wall section are 
summarized in figure 24 as follows: 

(a) For the direction of loading the 
computed neutral axis depth c exceeds 
-the critical value c , given by Eq. 
(26) or Eq. (27), hence confining 
reinforcement over the outer half of 
the compression zone, shown by cross 
hatching, should be provided in 
accordance with "Confining reinforce­
ment". 

(b) In the web portion of the channel 
shaped wall, within the outer half 
of the computed neutral axis depth, 
vertical bars need be confined 
(using antibuckling ties) in 
accordance with 11 Confinement of 
longitudinal bars" only if p . > 2/f . 
The affected areas are shaded. ^ 

(c) In all other areas, which are unshaded 

the transverse (horizontal) 
reinforcement need only satisfy the 
requirements for shear and its 
ratio to the concrete area should 
not be less than 0.0025. 

Longitudinal Wall Reinforcement 

For practical reasons the ratio of 
longitudinal i.e. vertical reinforcement, 
p„ , (Eq. (B-31)) over any part of wall 
should not be less than 0.7/f nor more 
than 17/f . Y 

y 
In walls which are thicker than 200 mm 

or when the design shear stress exceeds 
0.3 /fj MPa, at least two layers of 
reinforcement should be used, one near 
each side of the wall. 

The diameter of bars used in any part 
of a wall should not exceed one tenth of 
the thickness of the wall. The spacing 
between longitudinal bars should not 
exceed twice the thickness of the wall 
nor 400 mm. 

In regions where the wall section is 
required to be confined the spacing of 
vertical bars should not exceed 200 mm. 

Control of Shear Failure 

Shear forces and shear stresses 

The derivation of the design shear 
forces, using the principles of capacity 
design, have been outlined previously 
for cantilever walls ("Shear strength of 
cantilever walls") and in "Wall shear 
forces'1 for coupled shear wall structures. 
Shear strength provided in accordance 
with these shear forces is expected to 
ensure ductile flexural response of walls 
with an acceptable amount of reduction in 
energy dissipation during hysteretic 
response. For convenience and in keeping 
with traditional practice these forces 
may be converted into stresses thus 

v. I 
V wall (B-32) 
b d w 

where the effective depth need not be 
taken less than 0.8 £ w- Eq. (B-32) 
should be considered as an index rather 
than an attempt to quantify a stress 
level at any particular part of the wall 
section. From observed behaviour of 
walls, using this expression, certain 
limits have been set to ensure satisfactory 
performance. 

Shear may lead to different types 
of failure, such as diagonal tension, 
diagonal compression and sliding, each 
of which are examined subsequently. In 
general the principles relevant to the 
design of ordinary reinforced concrete 
beams(2) a r e a i s o applicable to structural 
walls. 

Control of diagonal tension and compression 

Two areas within a wall must be 
distinguished for which the design procedures 
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Fig. 25 - Slidng Shear 
Failure Initiated by Web 
Crushing. 

Fig. 26 - Suggestions for the 
Arrangement of Diagonal Rein­
forcement to Control Slidng Dis­
placement at the Base. 

Fig. 27 - The Inelastic Deformations of a Slab Inter­
connecting two Laterally Loaded Shear Walls. 

(a) (b) (c) (d) (e) (f) 

Fig. 28 - A Cantilever Wall and its Distortions. 
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are different. These are the potential 
plastic hinge zone and the remainder of 
the wall, which is expected to remain free 
of significant flexural yielding during any 
kind of dynamic excitation. In the design 
to control diagonal tension, one part of 
the shear strength is assumed to be provided 
by the shear reinforcement (v ) and the 
other by mechanisms collectively designated 
as the contribution of the concrete (v ) . 
Accordingly 

v. = v + v 
I C S 

(B-33) 

In this the contribution of the 
"concrete" to shear resistance, v , is 
assumed to be zero in the potential plastic 
hinge zone, unless the minimum design axial 
load, N , produces an average compression 
stress of 0.1 f 1 or more over the gross 
concrete area, £ , including flanges, in 
which case ^ 

2 / n f 

g 
(B-34) 

The value of v outside the potential 
plastic hinge Sone may be taken as that 
specified for beams(Q> subjected to gravity 
(non-seismic) loading only. This will 
normally result in significant reduction 
in the web reinforcement in the upper 
parts of a shear wall. 

Web reinforcement, consisting of 
horizontal bars, fully anchored at the 
extremities of the wall section, must be 
provided so that 
, v b s A = s w v 

v ) b s c w (B-35) 

These provisions should ensure that 
diagonal tension failure across the wall 
will never occur. To guard against 
diagonal compression failure, which may 
occur in flanged walls, that are over-
reinforced for shear, codes 1^} 
set an upper limit for the value of v^. 
These values were based on tests with 
monotonic loading. Recent tests by the 
Portland Cement Association(ID and the 
University of Berkeley(18> have demonstrated, 
however, that web crushing in the plastic 
hinge zone may occur after only a few 
cycles of reversed loading involving 
displacement ductilities of 4 or more. 
When the imposed ductilities were only 3 
or less, the shear stresses stipulated 
by existing codes(16) could be repeatedly 
attained. Web crushing may eventually 
lead to apparent sliding shear failure, 
as shown in figure 25. To prevent such 
failure the ideal shear strength of the 
wall should be such that 

v. ^ (0. l,max v S + 0.16) £ 0. i /± % (MPa) c 
(B-36) 

It is seen that for cantilever shear 
walls with cj> =1.39 an<3 a structural 
type factor of S = 1.6, in which limited 

displacement ductility demand is expected, 
the design shear stress will attain the 
maximum value considered for all structures 
i.e. 0.8 /fT MPa. On the other hand for 
a coupled shear wall structure with 
<j) = 1.39 and S = 0.8, v. = 0.49 / F ~ 

l ,max 

Control of sliding shear 

It is likely that sliding in the 
plastic hinges of walls is better controlled 
by conventional reinforcement than it is in 
beams where sliding, resulting from high 
intensity reversed shear loading, can 
significantly affect the hysteretic response 
(see figure 4 ) . The reasons for this are 
that most shear walls carry some axial 
compression due to gravity and this assists 
in closing cracks across which the tension 
steel yielded in the previous load cycle, 
and that the more uniformly distributed and 
embedded vertical bars across a potential 
sliding plane provide better dowel shear 
resistance. 

Also, more evenly distributed vertical 
bars across the wall section provide better 
crack control. In beams several small 
cracks across the flexural reinforcement 
may merge into one or two large cracks 
across the web, thereby forming a potential 
plane of sliding. Because of the better 
crack control and the shear stress limitation 
imposed by Eq. (B-36), it does not appear 
to be necessary to provide diagonal steel 
across the potential sliding planes of the ,g. 
plastic hinge zone, as it has been suggested 
for beams. However, it is recommended that 
in low rise shear walls some of the shear 
should be resisted by diagonal bars, placed 
in the middle of the wall thickness, 
particularly when the minimum axial compression 
stress on such walls is less than 0.1 f' 

c 
and the shear stress exceeds 0.4 /f 1. 

c 
Suggested arrangements are shown in figure 
26. Such bars should be included in the 
evaluation of the flexural resistance and 
may be included in the resistance to 
diagonal tension. Construction joints represent potential 
weaknesses where sliding shear displacement 
can occur. Therefore it is recommended that 
the design for shear transfer across 
construction joints be based on the shear 
friction mechanism(2). Accordingly where 
shear is resisted at a construction joint 
by friction between carefully roughened 
surfaces and by dowel action of the vertical 
reinforcement, the ratio of reinforcement 
that crosses at right angles to the con­
struction joint should not be less than 

N 1 

p , = (wall — _H) > 0. 0025 
Kvf A 1 f 

(B-37) 

where N is the minimum design compression 
force on the wall. For tension, N should 
be taken as negative. V 1 1 is obtained 
from Eq. (B-20) or Eq. (B-f57. 

Detailing of Coupling Beams 

The ductility demand on coupling beams 
of coupled shear walls, such as examined 
in " Coupled Shear Walls 1 1, can be large. 
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Fig. 29 - Effective Shear 
Area of a Flanged Wall 
Section. 

101 

O 

914 

(a) Flanged 

101 

(b) Barbel! 

101 

(c) Rectangular 

Fig. 30 - Nominal Cross Sectional Dimensions of 
the PC A Test Specimens (11). 

^y^^7 Deflection (in) 

Fig. 31 - Continuous Load-Deflection Plot for Initial Cycles for the Flanged 
Wall Specimen Fl. 

Fig. 32 - Continuous Load-Deflection Plot for Initial Cycles for the Rect­
angular Wall Specimen R2. 
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From Eq. (B-14) 

Fig. 33 - Continuous Load-Deflection Plot for the Initial Cycles for 
Specimen B5. 

From Eq.(B-12 ) 

Fig. 34 - Continuous Load-Deflection Plot for all Cycles for Specimen 
B5 
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(See figure 7b). To preserve the energy 
dissipating properties of such beams, 
which are often relatively deep, diagonal 
reinforcement should be utilized(2) to 
resist simultaneously both the moments 
and the shear. Diagonal bars in cages 
- should be confined to ensure that buckling 
of diagonal bars cannot occur. For this 
purpose Eq. (B-30) and the rules listed 
in 1 Confinement of longitudinal bars' 
should be followed. However neither 
the spacing of ties nor the pitch of 
rectangular spirals should exceed 100 mm. 

When coupling beams are as slender 
as normal beams, which are used in ductile 
frames, distinct plastic hinges will form 
at the ends and these can be detailed as 
for beams. The danger of sliding shear 
failure and the inhibition of flexural 
ductility increases with increased depth 
to span ratio, h/& , and with increased 
shear stresses. therefore it is recommended 
that in coupling beams of shear walls 
the entire seismic design shear and flexure 
should be resisted by diagonal reinforce­
ment in both directions unless the earth­
quake induced shear stress is less than 

v..= 0 1 n 'f * 
c (B-38) 

It should be noted that this severe 
limitation is recommended because 
coupling beams can be subjected to much 
larger rotational ductility demands than 
spandrel beams of similar dimensions in 
frames. There is no limitation on the 
inclination of the diagonal bars. 

Slab Coupling of Walls 

When walls are interconnected by 
slabs only, as shown in figure 17c, the 
stiffness and strength of the coupling 
between the two walls becomes difficult 
to define. In the elastic range of 
displacement a considerable width of the 
slab will participate in load transfer. 
However, when inelastic deformations occur 
in the doorway, as illustrated in figure 
27, a dramatic loss of stiffness can be 
expected(15). Even when the flexural 
reinforcement is placed in a narrow band, 
with a width approximately equal to that 
of the doorway, and the band is confined 
by stirrup-ties enclosing the top and 
bottom slab bars in the band, it is diff­
icult to control punching shear around 
the toes of the walls. From preliminary 
studies (15) appears that the hysteretic 
response of slab coupling is poor and that 
this system does not provide good energy 
dissipation with reversed inelastic 
cyclic loading. As figure 18 indicates, 
the contribution of slab coupling to the 
total moment of resistance is not likely 
to be significant. For this reason its 
contribution to seismic strength should 
be neglected in most cases. 

When shallow beams, projecting below 
the slab, are provided across doorways, 
it must be expected that they will fail 
in shear, unless the very significant 
contribution of the slab reinforcement, 
placed parallel to the coupled walls, is 

included in the evaluation of the flexural 
overcapacity of the relevant beam hinge, 
and thus in the evaluation of the imposed 
shear. 

NOTATION: 

A = moment parameter used for coupled 
shear walls 

A^ = area of one bar, m m 2 

A * = area of concrete core in the outer 
c half of section which is subjected 

to compression strains, measured tg 
outside of peripheral hoop legs,mm 

A = effective area of the cross section 
of a wall subjected to axial load 

A^ = gross area of section, m m 2 

A * = gross area of the outer half of wall 
^ section whigh is subject to compression 

strains, mm 
A s h = t o t a l effective area of hoop bars 

and supplementary cross ties in 
directions under consideration 
within spacing s^, mm 

A t e = a r e a ° f 2 o n e l e9 °f stirrup or stirrup 
tie, mm 

A = area of shear reinforcement within 
a distance s, mm^ 

A = effective web area of wall cross 
section, mm 

b = width of compression face of member 
or thickness of rectangular wall 
section 

b = web width or wall thickness w 
c = computed distance of neutral axis 

from compressive edge of the wall 
section 

c = critical value of c c 
d = distance from extreme compression 

fibre to centroid of tension steel 

e x,ey= eccentricity of centre of mass 
in x and y directions respectively 

E = modulus of elasticity of concrete, 
° MPa 

f - form factor considered with shear 
deformation 

f 1 = specified compressive strength of 
concrete, MPa 

f = modulus of rupture of concrete, MPa 

f = specified yield strength of steel 
^ reinforcement, MPa 

Lyh specified yield strength of hoop 
or supplementary cross tie steel, MPa 

G c = modulus of rigidity of concrete, MPa 

h = overall thickness of member or depth 
of beam, mm. 
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overall height of wall of horizontal 
length mm 

dimension of concrete core of 
section measured perpendicular to 
the direction of the hoop bars, mm 

importance factor 

moment of inertia of cracked section 
transformed to concrete 

effective moment of inertia for 
computation of flexural and shear 
deflections 

moment of inertia of gross concrete 
section about centroidal axis 

equivalent moment of inertia of 
wall section neglecting the 
reinforcement for computing total 
deflections 

distance between axes of shear walls 

length of clear span or distance, 
measured face to face of support 

horizontal length of wall 

maximum moment in member at stage 
for which deflection is being 
computed 

cracking moment 

moment induced by code specified 
static loading 

ideal flexural strength of wall 
section 

overturning moment at the base of 
a shear wall structure due to code 
load 

moment developed at flexural 
overcapacity of member 

moments due to code loading developed 
at the base of the wall concurrently 
with earthquake induced axial tension 
or compression respectively 

=flexural overcapacity developed in 
the tension and compression wall 
respectively 

design moments at the base after 
moment redistribution in the 
tension and compression walls 
respectively 

number of floors above the section 
of wall being considered 

number of storeys in a shear wall 
structure 

design axial compression load normal 
to cross section occurring simult­
aneously with the design shear 
force, N 

axial load on member due to deal 
load only 

eq 

?LR 

"eq 

P° P° 

S 

T 

code 
V. 1 
V wall 

maximum design axial load due to 
gravity and seismic loading acting 
on the member during an earthquake, N 

axial load on member due to design 
earthquake loading only 

axial load on member due to 
reduced live load 

maximum axial load on member due 
to earthquake only at the 
development of flexural over­
capacity 

=design axial tension and compression 
force acting on wall at the develop­
ment of the flexural overstrength 
capacity of the structure 

= shear overcapacity of a coupling 
beam 

= spacing of stirrups, mm 

= vertical spacing of horizontal 
reinforcement, mm 

= horizontal spacing of vertical 
reinforcement along length of wall, 
mm 

= structural type factor 

= tension force or period of 
vibration, seconds 

= nominal permissible shear stress 
carried by concrete, MPa 

= ideal shear stress, MPa 

= nominal shear stress allocated to 
resistance of web reinforcement, MPa 

shear demand derived from code loading 

ideal shear capacity of wall 

design shear force for a wall at 
the development of the flexural over­
capacity of the structure 

= shear force developed at flexural 
overcapacity 

= distance from centroidal axis of 
gross section, neglecting the 
reinforcement, to the extreme fibre 
in tension 

= modifier of structural type factor 

= wall deflection due to anchorage 
deformations only 

= wall deflection due to flexural 
deformations only 

= deflection at top of shear wall at 
ultimate state 

= wall deflection due to shear 
deformations only 

= deflection at top of shear wall at 
first yield 
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4> = strength reduction factor 

4) = curvature at maximum displacement 
U ductility 

<J>y = curvature at first yield 

0^ = overstrength factor 

e = specified compression strain at 
extreme concrete fibre, 0.00 3 

ece ~ compression strain at extreme 
concrete fibre at first yield of 
tension steel 

e = compression strain at extreme 
concrete fibre at development of 
a maximum curvature 

£y = yield strain of reinforcement 

= displacement ductility factor 

= curvature ductility factor 
w

v - dynamic shear magnification factor 

= ratio of vertical tension reinforce­
ment in wall spaced at 

p ^ = ratio of reinforcement crossing 
unit area of construction joint 
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APPENDIX I 

g + 

3 -i 

cr (B-14) 

The moment assumed to cause cracking 
is from first principles 

THE ESTIMATION OF DEFLECTIONS OF CRACKED 
REINFORCED CONCRETE CANTILEVER WALLS 

f I 
(B-15) 

Assumptions . 

Deflection estimates generally used in 
seismic design should reflect the 
behaviour of the structure after the 
development of extensive cracking at a 
load level which, as yet, does not result 
in inelastic deformations. Therefore 
for the purpose of the derivations that 
follow, wall behaviour at 75% of the 
theoretical yield load will be considered. 
The yield load is that which causes the 
main part of the flexural reinforcement, 
placed in boundary regions of walls, 
such as flanges, to yield. If for 
example the main flexural reinforcement in 
a wall section consists of seven layers 
of D28 bars, the yield load is that 
attained at the onset of yielding in the 
innermost (i.e. seventh layer of these 
D2 8 bars). This load will be close to 
the ideal flexural capacity. 

In order to define the stiffness of 
any elastic member with given boundary 
conditions, a certain unit deformation 
must be related to a certain load pattern. 
For the purpose of this study the structure 
and the load on it are those shown in 
figure 2 8a and figure 2 8b, and the 
deformation to be determined is the lateral 
deflection at roof level, A , as shown in 
figure 28c. 

It is seen that the relationship 
between the second moment of area and the 
moments are such that I ^ I 
1 ( M c r / M a ) > 0) . 

> I where 

For beams and columns of normal 
proportions and reinforcement contents it 
is found that usua-ly 0.4 < I /I < 0.6, 
and hence the equivalent moment o? inertia 
is such that 0.5 < I /I < 0.7. Consequently 
in the elastic analysis gof frames customarily 
the "gross moment of inertia", I of members 
is used, and this is reduced by 30 to 50% 
to allow for the effects of cracking. 

In structural walls usually consider­
ably less flexural reinforcement is being used 
than in beams of ductile earthquake resisting 
frames. The flexural tension steel content, 
p = A /bd, to be considered in the evaluation 
of flanged transformed wall sections can be 
as small as 0.05%. Consequently in such 
walls the "transformed moment of inertia", 
I will be a smaller fraction of the 
"gross moment of inertia", I . Cracking 
has thus a more profound effect on the 
stiffness of normal walls than on that 
of beams. 

The flexural deformation, shown in 
figure 2 8d can therefore be obtained thus 

The symbols used in the subsequent 
derivation are fully defined in the text 
or the list of symbols. 

Ph . 
A = m 3E I c e (1-2) 

Flexural Deformations 

The flexural deformations, being 
dominant, are normally the only ones that 
are considered in the design of flexural 
members. Accordingly the roof deflection 
for a homogeneous elastic cantilever wall 
of figure 2 8a is 

- Ph 3 

A = 3E I c g 
(I-D 

The most appropriate approach to the 
estimation of cracking is to allow for 
a loss of effective resisting area in the 
cross section. The effective moment of 
inertia of the section, I , will be 
between that based on the euncracked section, 
I , and that obtained from the fully 
c?acked section in which the steel area 
is transformed to concrete area, I 
An interpolation for I between the rabove 
limits has been developed by Branson and 
it has been adopted by the American 
Concrete Institute< 1 6'. its background 
is examined elsewhere( 2' ^ ) _ This is 

Anchorage Deformations 

The analytical model commonly used 
is a cantilever. This is fully fixed 
against rotations at its base. (figure 
28a). Under lateral load the vertical 
wall reinforcement is at its highest 
stress at the base. Consequently tensile 
strains along the flexural bars will only 
gradually decay in the foundation structure. 
The elongation of the vertical bars within the 
foundation structure and the slip due to 
high local bond stresses along the develop­
ment length will result in an apparent "pull 
out" of such bars at the base of the wall. 
This can significantly increase the wall 
deflection, as shown in figure 28e. Based 
on the relative magnitudes of observed "pull 
out" deformations, it is suggested that its 
magnitude be estimated as 

A , 0.2 A (1-3) 

Shear Deformations 

It is well known that shear defo-rmations 
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Fig. 35 - Sectional Properties of an Example Shear Wall 
Section. 

r25mm cover to D16 

Fig. 36 - Arrangement of Transverse Reinforcment in the Critical 
Regions of the Example Shear Wall Section. 
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in slender flexural members are negligibly-
small in comparison with those due to 
flexure. Walls , however, may belong to 
the family of "deep beams", in which shear 
deformations are likely to be significant. 
Therefore shear deformations should be 
considered. 

By equating the above two equations 
the equivalent wall moment of inertia, 1^, 
is obtained thus 

I = w ( B - 1 2 ) 
1.2 + F 

The shear deflection of a homogeneous 
elastic wall at roof level, shown in figure 
28f, is known to be 

fPh w 
G A c w 

(1-4) 

The area of the wall, effective in 
shear, A , is defined in figure 29. It 
will be assumed that A = b & w for the 
common type of walls used. w 

It has been found that in members 
in which diagonal cracks have developed 
as a result of shear stresses, the 
relative contribution of shear deformations 
is considerably larger than what Eq. (1-4) 
would predict. It will be appreciated 
that after the development of diagonal 
cracking a new form of shear transfer 
begins to operate i.e. the truss mechanism. 
In this new mechanism the web reinforcement 
(stirrups) contributes to large shear 
strains. It has been s h o w n t h a t the 
shear stiffness of diagonally cracked beams 
is only 10-30% of that of uncracked beams, 
depending on the contribution of web 
reinforcement. 

The estimation of shear deformation 
in a shear wall is complicated by the fact 
that the shear force in a real wall will 
decrease from a minimum at the top of the 
wall to a maximum of the base. Moreover, 
in the lower portions of the wall more 
extensive flexural and shear cracking will 
occur, and it can be expected that in 
these more heavily cracked zones the shear 
deformations will be larger. Taking 
these considerations into account it is 
suggested that the contributions of shear 
deformations along the height of a cantilever 
wall be estimated from the following simple 
expression: 

1.2 Ph 
v 0.4 E 0.3A c w 

Combined Deformations 

lOPh 

E A c w 

(1-5) 

It is seen from figure 28 that the 
roof deflection of the cracked cantilever 
wall due to flexural, anchorage pull-out 
and shear deformations is A = A + A f + A . 
Substituting from Eqs. (1-2) , m V 

(1-3) and (1-5) we obtain 
3 n ^ 3 Ph 

A = 3E I c e 

0. 2Ph 

3E I c e 

lOPh 

E A c w 
(1-6) 

It is convenient to express the 
deflection in terms of flexural deformations 
and an equivalent wall moment of inertia, 
I t t, so that 

Ph 
A = 3E I c w 

(1-7) 

where value of I is given by Eq. (B-14) 
and 

30 I 
e 

h 2 b I w w w 
(B-13) 

A Comparison with Experiments 

Recently the Portland Cement Assoc­
iation in Skokie (US) carried out extensive 
testing with centilever shear w a l l s ( ^ . 
Some observed results of this programme 
are compared with values obtained from 
Eq. (B-12) and Eq. (B-14). All the walls 
reported have the same aspect ratio of 
h /% = 2.4. This is in the range where K w . . . 

ear deformations are likely to be significant. 
The basic dimensions of the cross 

sections used for the 4752 mm high wall 
specimens are shown in figure 30. A 
comparison of predicted deflections with 
observed ones was made for all seven 
specimens reported. However, representative 
results for only three of the cases are 
presented here. 

Figure 31 shows the initial cycles 
of the load displacement relationship for 
the flanged wall specimen (figure 30), when 
the load did not exceed approximately 60% 
of the yield load P . The straight line 
shows the idealized yrelationship that would 
have resulted from Eq. (B-12). 

A similar relationship is shown in 
figure 32 for a wall with a rectangular cross 
section. In the response shown the maximum 
load reached approximately 8 3% of the yield 
load, Py. 

Finally a comparison is made for a wall 
with a rectangular boundary element (barbell), 
B-5, in figure 33. Here Eqs. (B-12) and 
(B-14) are compared. It is seen that Eq. 
(B-14) generally recommended( 8) for the 
prediction of beam deflection, overestimates 
the wall stiffness. The differences in 
deflections, as predicted by the two 
equations, result from the considerations 
of shear and anchorage deformations, which 
have been incorporated into Eq. (B-12). 
The full response, including the inelastic 
cycles, of this wall specimen, is shown in 
figure 34. 

With respect to the PCA experiments 
used here, it may be said that the suggested 
deflection estimate procedure should be 
acceptable for design purposes. 

APPENDIX II 

DESIGN OF A CANTILEVER SHEAR WALL 

Design Requirements and Properties 

Preliminary design has indicated that 
one of several symmetrically arranged canti-
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lever shear walls of a 11 storey Class III 
building, resisting the required seismic 
loading, may be dimensioned and reinforced 
at ground floor level as shown in figure 35. 
In this study seismic actions in the 
longitudinal direction of the wall sections 
are considered only. The first storey 
is 3.50 m high and the upper 10 storeys 
are 3.25 m each. 

are as follows: 

Concrete 
Vertical wall reinforce­
ment 

Horizontal wall shear 
rein forcement 

Horizontal hoops and 
ties 

The total loading at ground floor 
level from all the tributary areas of the 
upper floors is as follows: 

be used 

f.i = 2 5MPa c 
f y = 380MPa 

f = 380MPa 
y 
f = 275MPa Y 

Dead load 
Reduced live load 

7000 kN 
3000 kN 

The centre of the lateral static 
load, used in the preliminary design, was 
located at 23 m above ground floor. At 
ground level the wall is assumed to be 
fully fixed against rotations. 

The D16 bars provide (2 x 201)380/ 
(0.35 x 10 6) = 0.44 MN force per meter 
wall length. 

Ignore contribution of reinforcement 
in the flange and the reduction of steel 
flexural contribution in the elastic core 
of the section then: 

Compression C 

Tension L28 
L16 

(0.85 x 300)3000X 
(0.85 x 25)/10 6 = 

14 x 615 x 380/10 6 

(6.0 - 0.4 - 1.02) 
0.44 

Total tension T 

16 . 3MN 
3.27 

2.01 

5.28^5. 3MN 

Therefore C P. 
M i = 16.3(2.15 - 0.5 x 0.85 x 0.3) =33. 

3.27(6.00- 2.15-0.5x1.02) =10. 
2.01(0.5x4.58+0.4-2.15) = 1. 

0MN 
OMNm 
9MNm 
lMNm 

No new trial for c is required. Therefore 
M. =45.OMNm l 

Loading causing tension in the flange 

P. = 11.1 MN M. 
1 

i) 

ii) 

and 
iii) 

Minimum requirements with respect to 

Section "Stability" i.e. 
&n/b < 3500/400 = 8.75 <10 

Section"Longitudinal Wall Reinforce­
ment " i.e. 
p„ . = 0.7/380<2 x 201/(400 x 350) x,,min 
= 0.004 

Bars spacing requirements are all 
satisfied 

Flexural Capacities 

The flexural capacities are to be 
evaluated for each direction of loading. 
The maximum axial compression to be 
considered for the evaluation of the avail­
able ideal flexural strength is from(l) 

xdeal (D + Lj/<$> = (7000 + 3000)/0.9 
-K 

11,100 kN 

Loading causing compression in the flange 

P ± = 11,100 kN M. l 
Using a trial and error process, 

the neutral axis depth will be estimated 
so that the internal compression forces less 
the tensile forces will give a compression 
resultant of approximately 11 MN. Then 
the moment about the reference axis (the 
centroid of the gross concrete section) 
will be computed. 

Assume first c = 0.05 x 6000 300 mm 

Assume first c 

Compression C 
0.35 x 6000 2100 mm 
(0.85x2100) 4 00 (0. 85x25) 

/10 6 

6̂ 

Tension 

C 2 8=14x615x380/10 f c 

C.^=neglect 

Total compression C 

T 2 8=(6x615)380/10 6 

= 15. 
- 3. 

2MN 
3MN 

=18.5MN 

in the flange T ( 3. 0-2x0.27)0.44 lb 
in the web 

Reduce 

L16" (6.0-0.4-2.1)0.44 

Total tension T 

Net compression P^ = 11.1 < 

a by A a = (14.5-11.1) 
106/(0.85x25x400) = say 

= 1. 

= 1. 

= 1. 

= 4. 

4MN 

1MN 

5MN 

0MN 

14.5MN 

Hence 
by proportion 

C 

c = 2100 - 370/0.85 

'2 8 
-16 

L28 
in the flange 

T 
in the web T 

16 
16 

1664x15.2/2100 

as before 

as before 

as before 

as before 
(6.0-0.4-1.66)0.44 

= 11.1 

370 

1664 mm 

= 12. 

= 3. 

0MN 

3MN 

15. 

= 1. 

= 1. 
= 1, 

4. 
=TT. 

3MN 

4MN 

1MN 
7MN 

2MN 
T M N 
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M ± = 12.0(6.0-2.15-0.85x1.66x0.5) = 37.7MNm 
3.3(6.0-2.15-0.5x1.02) = ll.OMNm 
(1.4+1.1)(2.15-0.5x0.4) = 4.9MNm 
1.7{-(6.0-0.4-1.66)0.5+2.15-0.4} 

= 0.4MNm 

Hence moment of resistance 
1 S M i 5 3.2MNm 

Design for Shear 

h = 832-41+0.5x12 = 797 = 800, 
A* = 400x832 = 333000 mm 2, Assume R12 ties, 

Assume cover to HD stirrups = 25 mm and to 
main bars 41 mm, hence 

A* = (400-2x41+2x12)(832-41+12) = 275000 m m 2 

(A*/A* - 1) = (333/275-1) = 0 . 2 1 

0.3x0.21 = 0.063 < 0.12 hence Eq. 
(B-29) governs 

As the ideal moment capacity for the 
most adverse load combination is 53.2MN, 
the code required shear is close to 
0.9x53.2/23 = 2.08MN. 

For a 11 storey building the dynamic 
shear magnification from Table B-I is 
oo = 1.7. With a flexural overstrength 
of 125% of ideal strength, the design 
shear force for the wall is obtained from 
Eq. (B-18). 
v

T T „ n = 1-7 x 1. 25 x 2. 08 = 4.42 MN wall 
Hence from Eq. (B-32) 

v ± = 4.42 x 10 6/(400 x 0.8 x 6000) = 2.30MPa 

From Eq. (B-36) the maximum allowable shear 
stress is 

v. l, max 

N /A u' g 

(0. 3 x 1. 39 x 1. 0 + 0. 16) 
•25 = 2.89 > 2.30 MPa 
11.1 x 10 6/{ 6000x400+(3000-400) 400} 

= 3.23MPa 

From Eq. (B-34) 

= 0.25(1 + 25/25) •3.23-25/10 = 0.43MPa 

From Eq. (B-33) 

v. -v l c 2. 30 0.4 3 = 1.8 7MPa 

From Eq. (B-35) 

A v = 1.87x400xs/380 = 1.97s 

Assume two legs of HD16 bars, A, 

s = 402/1.97 = 204 
v 

200 mm 

402mm 

Use HD16 at 200 mm crs for horizontal 
shear (stirrup) reinforcement 

Confinement 

It is evident that no confinement 
is required when the flange is in compression 
as the section is extremely ductile with 
c/l = 0.05. However, when the flange is 
in tension the stem of the section will need 
to be confined. For this it was found in 
"Loading causing tension in the flanqes". that c = 1664 mm. " f 

From Eq. (B-26) with (j> = 1.4 

From Eq. (B-29) 

0.12s, 800 n 
1664/6000) = 6.54s, 

A s h = 0.12s h 800 x (25/275)(0.5 + 0.9 x 

With 6 R12 legs over 800 mm length 

s h = 6x113/6.54 = 104 mm 

From the spacing requirements stated in 
"Confining reinforcement" 

s, = 6 x 2i h ,max 168 or 400/3 = 133 or 150 mm 
s 

= 0.10x1.4x1.0x6000 840 < 1664 

Hence use R12 hoops and ties at 100 mm cr 
and for practical reason confine all 14 
HD2 8 bars. 

For the confinement in the longitudinal 
direction h" = 400 - 2 x 41 + 12 = 330 mm 

As the distance between the 2 HD28 bars is 
more than 200 mm, it will be necessary to 
place in the confined region an intermediate 
(nominal) bar in between them. A D2 0 
bar will enable another tie to be placed 
over the 400 mm width of the section. 
Hence by proportion from the above derivation 
of A , and s, - 100 sh h 
A s h = ( 3 3 ° / 8 0 ° ) 5 - 9 0 x 1 0 0 = 2 4 3 ^ 
R10 legs could be used, but for the sake of 
uniformity R12 ties will be provided as shown 
in figure 36. 

To confine the HD2 8 bars against buckling 
at the ends of the flange, ties are required 
in accordance with 'Confinement of longitudinal 
bars 1 and Eq. (B-30) 

From Eq. (B-31) 

p £ = 3 x 615/400 x 150 = 0.0308 > 0.0075 

Hence 
A 615 380 s h = 

te 16 275 ^ h 

The max 1 1 1 spacing is 6 x 28 = 168 mm 

R10 ties may be used, thus 

s h = 78.5/0.53 = 148 mm 

Use R10 ties at 150 mm cr S as shown in 
figure 36 

Hence provide confinement over a length of 
0. 5 x 1664 = 832 mm, 

For Eqs. (B-28) and (B-29) to be used take 
the following values 

The confining reinforcement as 
computed should extend, in accordance with 
figure 15, to a height of # w = 6000 mm, 
i.e. up to the 2nd floor of this structure. 
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Note that a more rigorous analysis, 
using Eq. (B-2 7) would have given the 
critical value for the neutral axis depth 
as follows: 

With S = 1.0, £T = 6000 and h = w w 
3.5 + 10 x 3.25 = 36 m 

8.6x1. 4x1x6000 ftCO v 0 / l f v l r c . c = , A n n , W 1 n , r i C / < Z s = 952mm>840< 1664 c (4-0.7x1)(17+36/6) 
Hence confinement is to be provided as 
computed above. 
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