HOLMES CONSULTING GROUP
STRUCTURAL AND CIVIL ENGINEERS

$R e:$ \qquad
Please see over
a brach copy of our repast, for your information a comment

2 February 1990

Mr Grant Wilkinson
Holmes Consulting Group
PO Box 701
CHRISTCHURCH

Dear Sir

RE: 249 MADRAS STREET

Further to our discussions by telephone this morning, we confirm that the scope of the possible non-compliance referred to in your report on the building is the connections between the walls on gridlines D and D / E, as shown on the attached sketch SKI from levels 2 to 6 inclusive (Level 1 being the ground floor carpark).

The proposed remedial work, if required, would consist of a total of two ties per floor, tying the walls to the floor diaphragm.

The agreed maximum tie load is 300 kN per tie. We understand that this load would be reduced on lower floors in accordance with the "Parts and Portions" section of NZS 4203:1984.

Please contact this office today if your understanding of the situation is not as outlined above.

AL NEAY CONSULTANTS LIMITED ALANM REAY RA (Muls.). Chio.
N.M. 21 ! Mootipipred Enginaer Sinciural C.mnsulant
FACSTMLLTF TRANSMISEION

14TKLMORE STEET
BOX $25-028$ VICORT

File 3rx)
erita
$\square-2$

Date $2 / 02 / 90$
10: HuHEs Consume ceaup
attention. Grat hulcancal. \qquad
CIT: \qquad exiesserturcat \qquad
 \qquad
\qquad
FROM : \qquad GEOFE BANKS.

MFS'SAGE:
RE: 249 MADRAS ST
Athathed Litter and sleth as discwsed.

ALAN REAY CONSULTANTS LIMITED

Mr Grant Wilkinson
Holmes Consulting Group
PO Box 701
CHRISTCHURCH

Dear sir

RE: 249 MADRAS STREET

Further to our discussions by telephone this morning, we confirm that the scope of the possible non-compliance referred to in your report on the building is the connections between the walls on gridlines D and D / E, as shown on the attached sketch SK1 from levels 2 to 6 inclusive (Level 1 being the ground floor carpark).
The proposed remedial work, if required, would consist of a total of two ties per floor, tying the walls to the floor diaphragm.
The agreed maximum tie load 15300 kN per tie. We understand that this lose would be reduced on lower floors in accordance with the "Part and portions" section of NZ S 4203:1984.
please contact this office today if your understanding of the situation is not as outlined above.

G.N. Banks

STRUCTURAL REPORT

OFFICE BUILDING
249 MADRAS STREET

CANTERBURY REGIONAL COUNCIL

by Holmes Consulting Group, Christchurch

in association with Buddle Findlay Limited and Schulz Knight Consultants Limited

CONTENTS

1.0	Introduction.
2.0	People involved with construction of this building.
3.0	Conclusions.
4.0	Summary of Investigation.
5.0	Structural Design Aspects.
6.0	Condition Report.

W8165REP

JANUARY 1990

1.0

INTRODUCTION

Holmes Consulting Group Limited were engaged on 24th January 1990 by Buddle Findlay Limited and Schulz Knight Consultants Limited to prepare a structural report on the office development located at 249 Madras Street. The building was completed during 1987 and is currently untenanted.

Developer
Contractor
Architect
Structural Engineer
Mechanical Consultant
Electrical Consultant
Soils Consultant

Prime West Corporation
Williams Construction Limited
Alun Wilkie Architects
Alan M. Reay Consulting Engineer

Soils \& Foundations Limited

Due to the limited time available for the report, our review has been limited to a brief inspection of the building and documents, and approximate calculations. No materials testing has been undertaken, and inspection has been limited to such areas as were readily accessible. Given these qualifications, our conclusions are as follows:-

1. The building is in a condition appropriate to its age and the contractor-as-developer form of construction.
2. The layout and design of the building is quite simple and straight forward and generally complies with current design loading and materials codes.
3. A vital area of non-compliance with current design codes, seen in the documents, is in the tying of the floors to some of the shear walls. This item is under review with the original consultants, but if confirmed will require potentially expensive remedial work. However, this cost is a matter for discussion between the current owner and their consultants.
4. Apart from ongoing maintenance costs which should be minor, no major costs are anticipated in association with the structure, subject to 3. above.

A full set of Architectural drawings, and some structural drawings were made available from Alun Wilkie Architects.

In addition, we were able to view the full design, documentation, Soils Investigation and complete set of drawings at the office of Alan M. Reay Consulting Engineer, on 26 January 1990. The original design engineer was unavailable for comment, having since left the company, but Mr Geoff Banks was available for comment on aspects of the design.
We have spoken to Mr Bryan Bluck, Buildings Control Manager at the Christchurch City Council, to discuss any concerns relating to the building permit and construction process.
An inspection was made on 30th January 1990. Levels 1 and 4 were unavailable for inspection, but the remaining floors were taken as representative. Access was gained to the Lift Machine room, Cooling tower and onto the roof.

1. No. storeys and occupancy:
2. Gross Floor dimensions:
3. Foundation type:
4. Suspended Floors:
5. Roof construction:
6. Floor Design liveloads:
7. Lateral load resistance:
8. Exterior Cladding:
9. Exterior maintenance:

5 storeys office (floor to floor height typically 2600 clear) and ground floor parking.
approx. $31 \mathrm{~m} \times 22.5 \mathrm{~m}$.

Shallow strip footings and foundations pads, with large foundation walls under structural shear walls.

200 mm overall insitu concrete on metal tray, supported by precast concrete beams on insitu columns on a $7.5 \mathrm{~m} \times 7.0 \mathrm{~m}$ grid generally.

Lightweight metal cladding on steel purlins and beams, supported on insitu concrete columns.
2.5 kPa typically (minimum load level required by NZS 4203 : 1984).

This is via a reinforced concrete coupled shear wall on the south face of the building, and a system of reinforced concrete walls around the service core on the north face of the building.
400 deep x 100 mm precast spandrel panels with glazing between, or on West elevations 140 mm blockwall to level 4 with metal cladding above perforated for windows.

No allowance for a Building Maintenance Unit has been made. Access for external cleaning is through windows. With opening windows restricted to a single pair approx. 1.0 m wide per 7.5 m bay, this is limited, although the spandrel panels are sufficiently wide for a person to stand safely.

6.1 Foundations

From the soils investigation report prepared by Soils and Foundations Limited, we note that settlement was highlighted as a potential problem, particularly in the north-east corner of the site, causing differential settlement concerns. The pad and strip foundations were sized using the recommendations of the report on maximum allowable stresses. However the recommendations of the report on a maximum pressure to limit settlement appear not to have been followed. It is not known whether any ground improvement work was undertaken to compensate for this.

However, inspection of the site revealed no sign of any significant settlement. Given that most settlement occurs within a relatively short time of construction, this should not become a significant problem in the future.

6.1 Gravity Structure

From our perusal of the drawings, and our investigation of the building, it appears the gravity structure is sound and complies in all respects with the appropriate design loading and materials codes. Furthermore it was noted in the documentation that although only a 2.5 kPa standard office live load was called for, the floor will withstand a live load of up to 3.4 kPa . This would be subject to further confirmation.

6.3 Lateral load resistance

Resistance to lateral loads is via reinforced concrete shear walls.
The shear walls themselves appear to have been generally well designed to the requirements of the correct design loading and materials codes. The building was apparently analysed using a 3 dimensional computer analysis programme checked by a static hand analysis.

An area of concern however has been discovered in the connections of the structural floor diaphragm to the shear walls. While this is not a concern on the coupled shear wall to the south of the building, connections to the walls at the North face of the building are tenuous, due to penetrations for services, lift shafts and the stairs, as detailed on the drawings.

The result of this would be that in the event of an earthquake, the building would effectively separate from the shear walls well before the shear walls themselves reach their full design strength.

Discussion has continued on this matter with Mr Geoff Banks of Alan Reay Consulting Engineer, and it currently appears that there may have been some provision made for this during construction. However, no documentation apparently exists, so it would only be safe to assume that this aspect fails to comply with current design codes.

6.4 Roof

Due to its light weight nature, the roof is prone to deflections, particularly in wind. A brief check shows that the deflections should be within allowable limits, as prescribed in the current codes. However, in our experience, movement may be quite perceptible and disconcerting for the occupants and in extreme wind, may cause damage to ceiling tiles.

Furthermore, it was noted on inspection that the internal butynol lined gutters at roof level have only one downpipe with no provision for an overflow. This is a potential problem in the event of a blockage to a downpipe.

6.5 Fire Escape

On the south face there is a steel cantilevering fire escape. This is currently in good condition but it should be noted that this type of construction is prone to corrosion and should be the subject of an on-going maintenance programme.

7.0 CONDITION REPORT

As expected for a building of this age, the structure appears generally in sound condition. Although mainly concealed by carpets and ceilings, those parts of the structure accessible to view reveal no signs of distress.

Standards of workmanship are adequate although finishes and details appear to have been given the minimum of effort. This is commensurate with the type of development and the time at which it was built.

There has been some water damage to ceiling tiles at level 5 adjacent to the wall between the lifts and the stairwell. This is probably due to a failed flashing.

During the inspection it was noted that there is evidence of cracking on the end of the spandrel panels on either side of the fire escape. The finish in these areas is different to the rest of the panels. It appears that the crack has formed at the interface between the spandrel panel itself and the beam supporting it. In the worst instance this crack may propagate above floor level and cause waterproofing problems.

The roof is mainly in good condition, although several panels of the Trimdek roofing have been dented quite badly. Furthermore, there is evidence of some ponding in the gutters which appear to have minimal fall. (refer to section 6.4 for further comment).

The Trimdek cladding should be subject to a performance guarantee. This would have to be checked with the current owners.

MEMO
JOB NAME 249 Mad as st.
JOB NO $|N \theta| \in S$
To: Warren \& Mahorey
Attn: Kerry Mason
Kerry
Martin Charles advises that the cost to carry out the remedial structural works (as per attached sheets) will be approx $\$ 14,000+G S T$.

Do you weed anything else from un on this job?

Regards

Grant wilkinson.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MEMO
JOB NAMEZ4G Madras sf t.
$J O B N O W$
Remedial Works
Steel angle required.
Iperlevel at 5 levels.

- \& levels have ruspended tile cuilingsia gard. - level han plaite-boand a paint ceil $?$ -assume all luels Lave carpet.
\qquad

CALCULATIONS
JOB NAME
CALCS BY

- Require simitar detail but handed at offer side of lift shaft.
- Derail typical to levels 1 to 5 .
$\frac{\text { - Pinustrate al fiwistos when wort completed }}{\text { eg ceilivas, carpet. }}$

CALCULATIONS

- Mark our \& devil Loller befre cutting or drilling steel. Locate steel in wall prior to drilling
- Holes ir wall to be ϕ dialed using percussive stray drill. Epoxy bars using

CALCULATIONS
JOB NAME
PAGES TKO?
JOB No
CALCSBY

- Prier to dillina holes locate H1Z-zos bass top steer in =ad. Confirm ocursail wits
- Mark cottinat steed. dill holes through slab prior
- After placing bolts temporarily fix arable to underside of slfibi ard seal arsed gape bu use on tiondt ribs.
- Grout gap using sikA 212 or similar

CALCULATIONS
JOB NAME
JOB No
CALCSBY
DA TE

Remedial wort to when with at tiff este if

$$
T_{i}^{\phi} / C_{i}{ }^{\phi}=300 \mathrm{Los}
$$

Either way
\Rightarrow wall Boo the : practically rely deep ensign th develipa DIZ.

$$
\begin{aligned}
& \therefore \text { region } N 31429 / 13=12-6
\end{aligned}
$$

ir arse tie les ara oflbes tl lag

$$
-A t \geqslant 300 / 250=1200 \cdots{ }^{2}
$$

\therefore @ 10 Ha, 120 we H
\therefore less 2 rows Lases
$\Rightarrow 200 \times 250 \times 10 \mathrm{~m} L$


```
M EM O
JO B NAMEW8% 6% 
JOB No
                                DATEZ{/,/&0.
    Brga_ Eloce 2-15
        - clacl bual derimition os S. sile.
            cacewt toryor wa, mo Lave
            doberes om quabice or cantructi.=
                of Five ćscape.
                * time nixllave cons-actudxu. Faults.
-Terrible elevachn a coach velure clearance.
```

ME MO
Job Name 249 Madras st.
JOB NO
DATEZC/1/90

Documents e Alan Rear.
Gravity typically $M=2.5 \mathrm{hla}$-possibly capacity up to 3.4hla.

$$
\mathrm{Cl}=.1 \text { as call. }
$$

- Stele analysis

Static $\Sigma V=3300$ hos ATm $=47254 \mathrm{hw}$ $T_{x}=T_{y}=1.06 \mathrm{sec} \div x .712$: better.

Dynamic analysis performed.

1,2	$P_{D}=1493$	$P_{C}=182$
3	461	35
4	2102	
5	2073	234
7	1898	351
9	541	

Offices CIVRAL AND CIVIL ENGINEERS
Offices in Christchurch, Wellington, New Plymouth, Auckland.

$$
\begin{aligned}
& \text { M E M O } \\
& \text { JOB NAME } \\
& \text { JOB No } \\
& \text { D ATE } \\
& \text { Wall } 3 \text { OT cooke } 1646 \mathrm{hw} \text {. } \quad \text { scale }=349 \\
& \text { of call } \\
& P_{a 0}=496 \text {. } \\
& \text { Wall } 4 \quad M=\text { code } 8662 \text { han ? } \\
& \text { Walls - max } M_{i} \phi^{\circ}=16278 \\
& \text { ct canc } 15873 .
\end{aligned}
$$

Diaphragm calces performed pS 56,57
-used billy Cd modified for sertincr.
$\tau \times-6$ or wall @ edge $=700$ kw ax
-a line 1 \& 4 an g ~ no drag bars for otter malls

Foundations
\rightarrow Pads on silt
Soils Investigation by S\&F 18 tue 86. rec shallow pita footings or piles. - reduced pressure Ne cav for rubbish. beaning stresses range $100-200$ hila allowable.
-used 200 reid stresses < 50-125 to 'limit settlement.

- Pads appear to be @ $=180 \mathrm{lfa}$ for 4^{2}

Designed bears to sm-1.6
to not lie e 1 - used ovestreyk

- seems or
- Coble

HOLMES CONSULTING GROUP
STRUCTURAL AND CIVIL ENGINEERS
Offices in Christchurch, Wellington, New Plymouth, Auckland.
MEMO
JOB NAME
JOB NO DATE
Rout steel

$$
\begin{aligned}
& 178 \times 7 \text { RSJ } @ \quad 7.00 \text { spa } \\
& 07300 \mathrm{cos}!
\end{aligned}
$$

CALCULATIONS
job namezá Madsas st

APPROX SEISNIC AWACYSIS.
Flosts all rapical
$\Rightarrow 250$ Hiboud on precast beans $400 \times 5500 . a$ with Coue deear walls 2000960×5500.0

$$
\begin{aligned}
\Rightarrow \text { A floor }= & 30.9 \times 23.5=726 \mathrm{n}^{2} \text { approxe. } \\
\text { lbean= }= & 74.5 \mathrm{~m} 400 \times 550(353) \\
& +60.5 \mathrm{~m} 060 \times 550(353) \\
\text { ewalls }= & 26 \mathrm{n} \text { e } 305 \text { a couled. } \\
& +4 \mathrm{e} 400 . \text { a }
\end{aligned}
$$

$$
\text { \# collunus }=20 \quad+\text { lgtug'r wall } l=93 \ldots
$$

$$
\begin{array}{rlrl}
W t= & 726 \times 4.5 & \text { floar } \\
& +74.5 \times 135 \times 4 \times 25 & & 400 \times 50 \text { beams } \\
& +60.5 \times-96 \times .35 \times 25 & 960 \times 550 \\
& +26 \times 3 \times 3.24 \times 25 & 300 \times 1 / \mathrm{n} \\
& +4 \times .4 \times 3.24 \times 25 & 400 &
\end{array}
$$

$$
\begin{aligned}
& 150 \text { Hibad } \\
& h=2.6 \text { A Level } 7=7 \times 4.5 \text { timalls } P_{D}=600(\mathrm{has} \\
& c=2.4 \mathrm{~A} \text { cerel } \delta=11.5 \times 4.5+50-2 \mathrm{call} \text {. } P_{D} \text {. 700kn. } \\
& \text { + kigrugrover } \\
& \text { taine live load - 2.5 h ha deyfical - } P_{L / 3}=605 \mathrm{Lu} \\
& \text { + 500has hal } 7,8 \therefore P_{5} / 3=53 \mathrm{hw} 7 \\
& =86 \mathrm{hms} 8 .
\end{aligned}
$$

CALCULATIONS

JOB No

$$
\therefore \text { have \& } \begin{aligned}
W t= & 5(5057+605) \\
& +(600+53)+(750+86) \\
= & 20750 \text { un }
\end{aligned}
$$

@ Cd:

$$
\begin{aligned}
\text { CRAM } & =125 \times 1.0 \times 1.0 \times 0.8 \\
& =0.1 \quad \text { we } .8 \mathrm{hr} \text { coped wall } \\
& \sim \text { Wace }=29.5 \mathrm{hN} .
\end{aligned}
$$

\therefore @ wast, $.6 \mathrm{~V} / \mathrm{hall}$ for $E(\omega)$ action - SU NUs action.

List-
bul

\rightarrow Lose e dia/wagn. e hut 6

$$
\begin{aligned}
S_{p}=1-0 \quad & =C_{p}-w x=0.3 \\
C_{p} & =k K_{x} z R C_{p} \cdots x \\
& =0.76 \times 5 / 6 \times 1.0 \times 0.3 \\
& =.19 .
\end{aligned}
$$

CALCULATIONS

JOB NAME		PAGE
JOB NO	CALCS BY	DATE

\therefore e . 6 Ustrovey to wall $-V=-19 \times-6 \times 5662$

$$
=645 \mathrm{hus} .
$$

\Rightarrow this lond must go via small seen.

$$
\begin{aligned}
\text { or stan }= & 2600 \mathrm{long} \times 200 \text { thich } \\
& \rightarrow \mathrm{Vi} \approx 645 / 2 \times 2.6 \equiv 1.24 \mathrm{ml}
\end{aligned}
$$

$$
\rightarrow \text { if } J_{2}=1.18 \mathrm{rli} \quad \text { ok. }
$$

\rightarrow assuming aresilreng wot net

$$
\begin{aligned}
& \Rightarrow \quad U_{i}=2 \times 645 / 2 \times 2.6=2.48 \mathrm{mP} . \\
& \text { (Q) Will } \mathrm{J}_{\mathrm{c}}=2 \int \mathrm{fic}=1.18 \mathrm{MF} \\
& \text { co } \mathrm{A} 0 / \mathrm{s}=867 \mathrm{a}^{2} / \text { a } F_{y}=300 \\
& \text { in } \quad D 12-130 \\
& c f-1012-450+\cdots \cos \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad V_{i}=2 \times 645 /-85 \times 2 \times 2-6 \\
& =2.92 \mathrm{ml} \\
& -1 \mathrm{~m} / 2=.59 \mathrm{mPa} \\
& \therefore A y / s=\left\{\begin{array}{l}
1554 m \% \\
e \quad D \text { ais- } 75 \text { cis. }
\end{array}\right.
\end{aligned}
$$

CALCULATIONS

$$
\begin{aligned}
& \text { Weguire Uall=1.5×1314=1971 hus. } \\
& =0 \quad 1)_{c}=-6 \sqrt{P_{0}} A_{g}=.62 \mathrm{mP} \\
& \mathrm{~V}_{2} \mathrm{~V}_{2}=2.45 \mathrm{Mm}_{2} \\
& \text { over. } 8 \text { lasal } \\
& \therefore \quad \text { AN/s } \quad 2 \quad 2.45-62 / 410 \times 300=1339 \mathrm{~mm}^{2} / 2
\end{aligned}
$$

\rightarrow hase Hlbs-200 of - A/s $=2011 \mathrm{~m}^{2}$. 0.6 .

$$
\begin{aligned}
& \therefore \text { if Uoste }=9.629 /-6 \times 20.12=798 \mathrm{~L} \\
& \therefore V_{\text {rall }} \text { Z } 1196 \text { hav } \therefore J_{i}=1.92 \mathrm{mfa} \text {. } \\
& \text { (2.6疾, Ag }=704 \mathrm{MPa} \\
& \text { Aoss z } 890 \mathrm{~m}^{2} / \text { - have } 1131 \mathrm{~m}^{2} / \text { - ork }
\end{aligned}
$$

ohimag.

CALCULATIONS
JOB NAME
JOBNO
CALCSBY
Jo B
B Y
D ATE
J_{2} co tacity

$$
\begin{aligned}
& \Rightarrow \text { Ama.ge Gor min shemar a ruerstrent } \\
& 342 c=1847 \ldots 6,25,365,515,2085,2235,2385 \\
& 2535 \\
& 21+12-226 m^{2} 0910,1300,1690 \\
& \text { lise } f_{c}^{\prime}=35 \text { Mla. } \\
& \Rightarrow D \text { tas } 2405 h \omega J-r_{i}=745!\mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
& C=381
\end{aligned}
$$

CALCULATIONS

JOB NAME
PAGE
JOB No
CALCS BY
D ATE

$$
\begin{aligned}
& \cong \\
& \text { mas size e locahioss } \\
& \begin{array}{cc}
1847 & 65 \\
\sim & 165 \\
\sim & 265 \\
\sim & 365 \\
943 & 465
\end{array} \\
& 226 \quad 735 \\
& \text { - } 1000 \\
& \text { ~ } 1270 \\
& \text { - } 1540 \text { 1356. } \\
& \text { - } 1810 \\
& \text { - } 2080 \\
& \text { - } 2350 \\
& \text { - } 2615 \\
& 9432885 \\
& 18472925 \\
& \text { - } 3085 \\
& \text { ~ } 3185 \\
& \text { - } 3285 \\
& \Rightarrow \text { with } P_{\Delta}=750 \text { hos self wy }+175 \text { huefors } \\
& P_{c}=150 \text { haj Foxor. } \\
& \Rightarrow \quad M E=12432 \text { anon } \\
& \text { (P PaD }=82: \ln \\
& M_{U} d=15873 \mathrm{hw} . \quad \text { e } P_{D}+L=1075 \mathrm{hu} . \\
& c=53 \text {. }
\end{aligned}
$$

JOB NAME
JOB No
CALCS BY

$$
5 R, 3
$$

$$
226 \text { e } 475,875,1275,1675,2075,2475,2875
$$

$$
\begin{aligned}
& -1232065,215,3135,2285 . \\
& \Rightarrow \text { with } P_{D}, l_{L} \text { as 2, } \\
& \Rightarrow \quad T_{i}=5474 \mathrm{Lu} \quad \text { o } \quad \text { Part }=833 \\
& M_{i} f=7000 \mathrm{hms} \text { - (a) } P_{0}+c=1075
\end{aligned}
$$

CALCULATIONS

Toral cagaity of walls

$$
\begin{aligned}
\sum \$ M_{i} & =9(5474 \times 2+12432+7451) \\
& =27748 \mathrm{LW}) .
\end{aligned}
$$

ct calculated bldg OTM $=37000 \mathrm{hw}$. u have 75 ép e full Ustrair - allowing for Dynamie a-obysis relextion

$$
\begin{aligned}
&+0,05 \text { 2shintios }=83 \% \text { of a Ushat } \\
& \text { a-cose. }
\end{aligned}
$$

Torsious to be sesistal an olver walle.
e $\sum M_{i} \delta=(2 \times 7000+9629+15873)$

$$
=39502
$$

$$
\Rightarrow \quad \phi_{0}=39502 / 27748=1.42 \text { as erpeted }
$$

\rightarrow allowing Gor retuced Ustafbase. such $H_{\text {at }} \underset{\text { base }}{V \text { aber }}=2550 /-6220.12$

$$
=2070 \mathrm{hw} .
$$

$$
\begin{aligned}
& \therefore \quad V_{i} d=1.42 \times 2070=2939 \mathrm{kN} . \\
& \text { alerater, on } 2, \quad M_{c} \phi=15873 \mathrm{hwn} \\
& \text { inplijing } \& U_{i} \text { cole } \approx 15873.6 \times 20.12=1314 \mathrm{hw} \text {. } \\
& \text { with } w_{v}=1.5 \text { a } 5 \text { suseegs }
\end{aligned}
$$

Recheck diaforagn

$$
\begin{aligned}
& \Rightarrow \text { firs } 2012-400 \\
& \therefore \text { available Vt e 300 ilo. } \\
& \phi U_{\text {sis }} 271 \text { has. }
\end{aligned}
$$

\therefore if Zlagar $564 \cdots$ ane included

$$
-2 \Delta p U_{s i}=385 \mathrm{hmj}
$$

require -2 air $f \omega_{v}=2.5$

$$
\begin{aligned}
& \rightarrow V_{i} \&=750 \\
& \therefore \quad C f_{i}=2 \sigma_{\mathrm{M}} \mathrm{Ml}-J_{c}=2 \sqrt{f_{c}^{\prime}}=1.0 \mathrm{Mf}
\end{aligned}
$$

Cf $\quad u_{\mathrm{e}}=750 \mathrm{DC} \times 2.6 \times .2=1.8 \mathrm{MPa}$.

$$
\begin{aligned}
& \because A_{y} / 5=8 \times 200 / 800=533 \mathrm{~m}^{2} / \cdots \\
& \Rightarrow \quad D 12 \mathrm{~s}+664 \times 2 \equiv 493 \mathrm{~m}^{2} / \mathrm{cos} 2
\end{aligned}
$$

out have a problem where O! Zs stop bebre hitting Hbboat.

Ir oMer direction all walls.
\therefore Thine $f V_{i}=200 / 6$ r $2-5=1250 \mathrm{hus}$. \Rightarrow repair lewsire steel for this.

CALCULATIONS

JOB NAME		PAGE
JOB NO	CALCS BY	DATE

wer 11.5 h interface wit fomor

$$
-A=1250 / 1.5 \times 300=362 \mathrm{~m} / .
$$

or with 564 ves $260-2 /$ s-ment.

- I-diudzolly
-wall Liae Δ / E Pro-calcs Ucode $=3 a 9 \mathrm{Lo}$

$$
\Rightarrow \quad V_{i}^{B}=2-5 \times 349=875 \mathrm{ln} .
$$

\therefore, using histre calculated

$$
\text { inplies Ushreyi } \text { Pax }_{\text {-ax }} \text { - } 263 \mathrm{hn} \text {. }
$$

Sinilarty, wall $e^{C} C$

$$
\begin{aligned}
& \text {-calc } M_{j}{ }^{8}=16278 \text { (inn } D H \text { calis) } \\
& \therefore \quad V_{i} d=16278 / 37683 \times 897 \\
& =387 \text { h N }
\end{aligned}
$$

\rightarrow Thanshes in shear over $2=3090$

$$
\text { - have - 10-D12- } \begin{aligned}
V_{S} & =339 L \mathrm{~W} \\
& -0 . L .
\end{aligned}
$$

Wails beiween.
simitas loale but 1 wall talues end of bean - appoas oll. ober curs s'ab, but no stoel shomin. possibla $2-4<$?

CALCULATIONS

Sunvary

- Line 1 (Souk nall) Ehb eq - Prócably oil

Line 4^{+}(0) orre wall) E-Weq.

Line C (West boletr-all) N(S ol

Line C-D (East nall toinet (West strair) N / s - probab́y o.l.

Liue D (Lift sheft/stair well) m/s no steel showan - ar uir nuch

Line D / E (East lift shaft) N/s. - no steel?

Eitire sheas core slighty disaions.

STRUCTURAL AND CIVIL ENGINEERS
Offices in Christchurch, Wellington, New Plymouth, Auckland.
CALCULATIONS
JOB NAME
PAGE
JOB No
CALLS BY
DA TE

On estrus shear crore

Cutting as show, \rightarrow get 4500 H12-200

$$
-V_{s}=410 \times 4 \times 565=927 \mathrm{hN}
$$

$$
\begin{aligned}
& +664 \text { west over } 11.5 \mathrm{~N} \\
& V_{S}=11.5 \times 269 \times 275=851 \mathrm{hm}
\end{aligned}
$$

-plenty already.
ceech rosf

$$
\begin{aligned}
& h=21 \text { man } 20 \ldots \\
& \therefore V=+0, S_{1}=1.0, \quad S_{2}=-9 \\
& \therefore V_{S}=36-1 s \quad \therefore q=1794 \mathrm{ups} \\
& \therefore \text { @ } C_{p i}= \pm 0.3, C_{p e}=-1.0 \\
& \text { - bw }=1.03 \mathrm{hfa} \\
& \text {-on } 7.5 \times 7 \text { guid } \\
& \therefore \quad \ell=7000, \text { rib width }-7500 \\
& \rightarrow \quad \omega_{\omega}=7.7 \mathrm{~T} \ln f .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { endepan- } \begin{array}{rl}
3 & 722 \\
& =.0042 L \text { - hight. }
\end{array} \\
& \therefore \text { woud expedr soce protens wirctibes. } \\
& \rightarrow \text { or } 5 \text {-yr uind -darep gts.541 hla }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { endspan }=23.0 \mathrm{~m} \\
& =-0033 \mathrm{atall} \text { a } \\
& \text { assume simengre o, caech eqta-35hpa } \\
& \rightarrow \text { u wx } M \cdot 70+\omega=-36 \mathrm{hw} . \mathrm{m} . \mathrm{e} / 8 \\
& \text { ci } M_{x} \cdots \cdots=28,76 \omega \Rightarrow e^{2} / t=\text { apporox }
\end{aligned}
$$

STRUCTURAL AND CIVIL ENGINEERS
Offices in Christchurch, Wellington, New Plymouth, Auckland.
CALCULATIONS
JOB NAME
JOB NO
CALCS BY
D ATE

$$
\begin{aligned}
& \rightarrow \text { and }=\text { (ames }-4.75 \sim \\
& \therefore \omega l^{r} z=+16.7 \quad h \omega=\quad \omega .70-\omega=-5.89 \\
& \text { or inter-a } \quad l^{2} / 1_{2}=+24.1 \mathrm{Lu} \text {. } \\
& \text { - anew } 10.1400
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } t=-26.0 \text { + es cos-justsk } \\
& \text { on a capacity }=28.4 \text { hus. fr. }
\end{aligned}
$$

Ala rang 660430.

$$
\begin{aligned}
& 9,11,14,15,16,17,19 \\
& 25,26,30,3132 \\
& 33,35
\end{aligned}
$$

$$
\Rightarrow \text { Pone in au time. }
$$

